
MARIADB PLATFORM
FOR TRANSACTIONS:
PRODUCTION
DEPLOYMENT
CHECKLIST AND
GUIDE

WHITEPAPER

MariaDB Platform for Transactions: Production Deployment Checklist and Guide WHITEPAPER

TABLE OF CONTENTS
1 PRODUCTION DEPLOYMENT OVERVIEW

2 PRODUCTION DEPLOYMENT CHECKLIST

5 PRODUCTION DEPLOYMENT GUIDE

5 PLANNING

6 CONFIGURATION
6 HIGH AVAILABILITY

7 SCALABILITY

10 DISASTER RECOVERY

10 SECURITY

11 PERFORMANCE TUNING AND OPTIMIZATION

12 PREPARATION

13 TESTING

14 PRODUCTION DEPLOYMENT SERVICES

MariaDB Platform for Transactions: Production Deployment Checklist and Guide WHITEPAPER1

MARIADB PLATFORM
FOR TRANSACTIONS:
Production Deployment Overview

MariaDB Platform is the leading enterprise open source database for transactional, analytical or hybrid transactional/

analytical processing at scale. And while it’s lightweight, easy to install and runs on any kind of infrastructure, including

cloud and containers, deploying a production database to meet the requirements of business-critical, mission-critical

applications (high availability, disaster recovery, performance, scalability and security) requires proper planning,

configuration and preparation.

The goal of this production deployment checklist and guide is to provide IT, operations and database management

teams with the information necessary to ensure a smooth and successful deployment of MariaDB Platform for

transaction processing (i.e., OLTP) in staging and production environments, where database requirements are much

higher than in development and testing environments. It assumes MariaDB Platform has been deployed in development

and test environments, and requirements from development teams (or existing production data) will be used to help

with capacity planning and hardware sizing.

The process is comprised of five stages:

• Planning

• Installation

• Configuration

• Preparation

• Testing

The planning, preparation and testing stages are critical to ensuring proper configuration and meeting business and

technical requirements, short term and long term. While it is possible to change the configuration of production

databases (to better meet enterprise requirements), proper planning and preparation not only reduces the need for

these changes, but makes it easier to meet future application requirements (e.g., scaling out to support consistent, if

not exponential, growth). And testing, of course, ensures that everything came together as expected.

The production deployment checklist and guide includes installation and configuration of not only the database itself,

but also of the advanced database proxy – a critical component when it comes to meeting high availability and security

requirements in production environments. It is one of many features, including workload-optimized storage, that must

be enabled and configured to meet the enterprise requirements of business-critical, mission-critical applications in

production environments.

The following checklist will help guide you through each stage of deployment, including links to documentation where

it may be helpful. However, you don’t have to do it all yourself. MariaDB can provide expert resources, including remote

DBAs, enterprise architects and migration managers to help organizations of all sizes plan and execute a production

deployment – whether it’s to support legacy infrastructure and application modernization, the launch of new applications

and services or the migration from a proprietary database like Oracle Database, Microsoft SQL Server or IBM Db2.

MariaDB Platform for Transactions: Production Deployment Checklist and Guide WHITEPAPER2

MARIADB PLATFORM
FOR TRANSACTIONS:
Production Deployment Checklist

Planning 2-4 weeks, 5 months out

Complete

Table workloads

Table storage

Table security

Query analysis

Installation 0-1 week, 4 months out

Documentation Complete

MariaDB Server: primary https://goo.gl/ytS1qM

MariaDB Server: secondaries (2+)

MariaDB Server: shards (optional, 2+)

MariaDB MaxScale: primary https://goo.gl/fkmhGy

MariaDB MaxScale: secondary

Configuration 6-8 weeks, 4 months out

HIGH AVAILABILITY WEEK 1

Documentation Complete

MariaDB Server: replication – or – https://goo.gl/22WwNs

MariaDB Server: clustering https://goo.gl/W6pqi8

MariaDB MaxScale: Keepalived https://goo.gl/ShKULw

MariaDB MaxScale: automatic failover https://goo.gl/HCr9Ar

MariaDB Platform for Transactions: Production Deployment Checklist and Guide WHITEPAPER3

Configuration 6-8 weeks, 4 months out

SCALABILITY WEEK 1

Documentation Complete

MariaDB Server: sharding (optional) https://goo.gl/JnaRRJ

MariaDB MaxScale: read/write splitting https://goo.gl/LgB5sK

Configuration 6-8 weeks, 4 months out

DISASTER RECOVERY WEEK 1

Documentation Complete

MariaDB Server: point-in-time rollback https://goo.gl/jkM3wv

Configuration 6-8 weeks, 4 months out

SECURITY WEEKS 1-2

Documentation Complete

MariaDB Server: authentication (PAM) https://goo.gl/WhHmu5

MariaDB Server: authorization (roles) https://goo.gl/4NW4Ah

MariaDB Server: auditing https://goo.gl/aieXAq

MariaDB Server: transparent data encryption https://goo.gl/DjNG3Y

MariaDB Server: network data encryption https://goo.gl/X7NEfo

MariaDB MaxScale: authentication (PAM) https://goo.gl/bE9MeK

MariaDB MaxScale: database firewall https://goo.gl/v9XMkc

MariaDB MaxScale: data masking https://goo.gl/FrEuxi

MariaDB MaxScale: result limiting https://goo.gl/TZZDby

MariaDB Platform for Transactions: Production Deployment Checklist and Guide WHITEPAPER4

Configuration 6-8 weeks, 4 months out

PERFORMANCE TUNING AND OPTIMIZATION WEEKS 2-3

Documentation Complete

MariaDB Server: group commit https://goo.gl/rmnCwJ

MariaDB Server: parallel replication https://goo.gl/ZjPcoj

MariaDB Server: binary log compression https://goo.gl/oRy3F2

MariaDB Server: thread pool

MariaDB Server: buffer pool

MariaDB MaxScale: query result cache https://goo.gl/J2Mhr5

Preparation 1-2 weeks, 2 months out

Documentation Complete

Table storage https://goo.gl/Ht6C2m

Table partitioning https://goo.gl/oz9GWT

Table compression https://goo.gl/QD1xKc

Column compression https://goo.gl/XHHyw6

Testing 2-4 weeks, 2 months out

Documentation Complete

Query performance

Replication performance

Backup and restore https://goo.gl/g9A4Sy

Point-in-time rollback https://goo.gl/jkM3wv

MariaDB Platform for Transactions: Production Deployment Checklist and Guide WHITEPAPER5

MARIADB PLATFORM FOR
TRANSACTIONS:
Production Deployment Guide

Planning
It’s important to identify the workload and storage requirements of individual tables before creating the schema

because MariaDB Server leverages per-table, workload-optimized storage engines.

• InnoDB is a general-purpose storage engine for mixed read/write workloads. If read scalability is required,
 replication can be used.

• MyRock is a space- and write-optimized storage engine created by Facebook. MyRocks has better compression
 and write performance than InnoDB, but less read performance. It is recommended for write-intensive workloads
 or if especially efficient storage is required – for example, to run on smaller, less expensive solid state drives.

• Spider is a storage engine for partitioning and querying data stored on separate database instances (i.e., storage
 nodes).

If write scalability is required, we recommend MyRocks on the storage nodes. If storage scalability is required,

we recommend InnoDB on the storage nodes for mixed read/write workloads, and MyRocks for write-intensive

workloads.

Tip
In a replicated environment, the same table can be created with different storage engines on different database instances.

For example, a table might be created with MyRocks on the primary for high write performance and InnoDB on the secondary

for high read performance.

Diagram 1: MariaDB Server tables with different storage engines

MariaDB Server
(Shard)

Carts Table

InnoDB

MariaDB Server

Products Table Purchases Table Carts Table

InnoDB MyRocks Spider

MariaDB Server
(Shard)

Carts Table

InnoDB

MariaDB Server
(Shard)

Carts Table

InnoDB

MariaDB Platform for Transactions: Production Deployment Checklist and Guide WHITEPAPER6

In addition, it’s important to identify tables and columns with personally identifiable and/or sensitive information

(PII/SPI). These tables should be noted for encryption and the columns should be noted for data masking. If columns

contain medium to large text/binary data and the table will use InnoDB, these columns should be noted for column

compression.

Next, we recommend a query analysis to identify how the data will be queried – when, how frequently and by whom.

This information will be necessary to properly configure the database firewall and protect the data from unauthorized

access.

Finally, high availability and scalability strategies must be selected prior to installation and configuration, and based

on workload requirements (e.g., storage); application requirements (e.g., consistency); and service level agreements

for availability, durability and performance. The high availability strategy will determine whether replication with

automatic failover or clustering is required, while the scalability strategy will determine whether sharding is required.

Tip
The white paper High availability with MariaDB Platform: The definitive guide provides detailed information on high

availability considerations and strategies.

White paper download: https://goo.gl/9gd1Qi

Configuration
High Availability

MariaDB Platform provides high availability via standard replication with automatic failover or clustering. However,

while failover is not an issue with clustering, it is limited to InnoDB. And because replication is synchronous, write

performance depends on the number of nodes (i.e., database instances in the cluster) – the more nodes there are, the

more impact there is on write performance. We recommend clustering for mixed read/write workloads that require

the highest availability with low to moderate read scalability. Standard replication with automatic failover is best for

mixed read/write and write-intensive workloads requiring high availability with high write performance and/or the

highest read scalability: semi-synchronous for durability, asynchronous for write performance.

Diagram 2: MariaDB Platform deployed in a high availability topology

MariaDB Platform for Transactions: Production Deployment Checklist and Guide WHITEPAPER7

Tip
If consistent reads are required with replication, the Consistent Critical Read filter can be enabled in the database proxy, and

with clustering, read queries can be delayed until all replicated transactions have been applied.

Documentation: https://goo.gl/zJorGS

Resources
High availability guide: https://goo.gl/6x2igh

High availability presentation: https://goo.gl/QP8Fdc

High availability documentation: https://goo.gl/QkJDT6

Scalability
MariaDB Platform scales reads, writes and storage – up and out. If moderate read scaling is required, both standard

replication and clustering can provide high availability and read scalability. MariaDB MaxScale should be configured for

read/write splitting, routing writes to the primary and load-balancing reads across one or more secondaries (if not all).

If clustering is used, we recommend read/write splitting because it prevents conflicts when the same data is written

to different nodes at the same time.

Note
If deploying to cloud infrastructure with its own load balancer, and where only one database proxy instance can be active at a

time, Corosync and Pacemaker can be used instead of Keepalived. (Refer to Diagram 2.)

MariaDB MaxScale high availability documentation: https://goo.gl/48WGc4

Note
If replication is chosen for high availability and one or more tables use the MyRocks storage engine, the binary log must be

set to the row-based format (not mixed or statement based).

Binlog formats documentation: https://goo.gl/X6tSsF

MariaDB Platform for Transactions: Production Deployment Checklist and Guide WHITEPAPER8

If high read scaling is required, an instance of MariaDB MaxScale can be deployed and configured as a binlog server

(i.e., replication server) between the primary and the secondaries to offload replication from the primary. The

secondaries will replicate from the binlog server instead of from the primary database, so its performance will not be

impacted by replication from many secondaries.

If write and/or storage scaling is required, tables can be created with the Spider storage engine to leverage transparent

sharding across multiple databases. There are two database roles in a Spider topology: the Spider nodes (querying and

routing) and the data nodes (querying and storage). The Spider nodes use standard replication or clustering to provide

high availability. However, the data nodes use two-phase commit, writing to two or more databases within a single

transaction, to provide high availability.

Diagram 3: MariaDB Platform in a high availability topology with read scaling

Diagram 4: MariaDB Platform in an extreme read-scaling topology

MariaDB Platform for Transactions: Production Deployment Checklist and Guide WHITEPAPER9

Tip
The data nodes can use InnoDB or MyRocks. InnoDB is recommended for mixed read/write workloads. MyRocks is

recommended for write-intensive workloads.

Tip
Spider, combined with JSON documents, is an effective alternative to NoSQL databases. Examples include customer profiles

and shopping carts stored as JSON documents in InnoDB tables (i.e., scalable mixed read/write workloads), and clickstream

events stored as JSON documents in MyRocks tables (i.e., scalable write-intensive workloads).

Resources
Spider presentation: https://goo.gl/qVzJQX

Spider documentation: https://goo.gl/uJi2aK

Binlog server documentation: https://goo.gl/mWpSRk

Read/write splitting documentation: https://goo.gl/n178Vi

Diagram 5: MariaDB Platform in an high availability topology with scalable storage and writes

MariaDB Platform for Transactions: Production Deployment Checklist and Guide WHITEPAPER10

Disaster Recovery
MariaDB Platform provides disaster recovery though backup and restore with MariaDB Backup as well as point-in-time

rollback with MariaDB Flashback. MariaDB Backup supports both full and incremental backups on InnoDB tables, and

full backups on MyRocks tables. MariaDB Backup supports compressed and/or encrypted tables, and can compress

and/or encrypt backups.

MariaDB Flashback performs a point-in-time rollback à la Oracle Flashback. It rolls back (or unwinds) a sequence of

recent transactions to a previous point in time. In many cases, it is faster to roll back recent transactions than to

perform a full restore.

Note
The binary log must be set to the full row image format in order to use MariaDB Flashback.

Binlog documentation: https://goo.gl/oWZgjQ
MariaDB Backup documentation: https://mariadb.com/kb/en/library/mariabackup-overview/
MariaDB Flashback documentation: https://mariadb.com/kb/en/library/flashback/

Note
MariaDB Flashback does not support DDL statements (e.g., DROP TABLE). If schema changes must be recovered, MariaDB

Backup is required.

Security
MariaDB Platform includes a number of advanced security features for protecting both the database (e.g., from

denial of service attacks) and the data itself (e.g., from data breaches). In a properly secured deployment, all of these

features will be enabled and configured:

Resources

PAM authentication: https://goo.gl/AaXZwL

Roles: https://goo.gl/KL8Hbu

Auditing: https://goo.gl/XZE4hr

Transparent data encryption (TDE): https://goo.gl/SB7dm4

Network data encryption (i.e., TLS): https://goo.gl/yEF31y

Database firewall: https://goo.gl/BbbiXv

Data masking: https://goo.gl/BbbiXv

Result limiting: https://goo.gl/YFVso2

MariaDB Platform for Transactions: Production Deployment Checklist and Guide WHITEPAPER11

The TDE plugin supports external key providers. MariaDB Server includes plugins for the AWS Key Management

Service (KMS) and eperi Gateway for Databases. We recommend using one of these key providers for maximum

security.

The database firewall is one of the most important features when it comes to protecting your data and preventing

data breaches. It can be configured to allow or block queries based on type (e.g., DDL vs. DML), syntax (e.g., missing

WHERE clause), table/column, frequency, role and time. The database firewall rules should be created based on the

query analysis performed in the planning phase.

In order to prevent data breaches from exposing PII/SPI, the data masking filter must be enabled – and configured with

rules created based on the schema analysis performed in the planning phase.

Finally, result limiting should be enabled and configured to protect the database from denial of services attacks

(malicious or accidental). If a query tries to return too many rows (or too much data), slowing down the database and

limited availability, the results will be empty.

Note
The database firewall must be used with data masking to fully protect personal information. The data masking rules are

based on column names. If a query calls a function on a protected column, the results will not be masked. Thus, database

firewall rules must be created to block queries with functions on protected columns.

Resources
Encryption key management documentation: https://goo.gl/6xd1yj

Performance Tuning and Optimization
MariaDB Platform includes a number of performance options and features. If standard replication is used for high

availability and/or read scalability, parallel replication and group commit can improve replication performance and

reduce replication lag. By default, MariaDB Server calls fsync() to flush the binary log writes of a single transaction,

and secondaries apply the binary log writes of a single transaction at a time (i.e., sequentially). However, when group

commit is enabled, MariaDB Server will flush the binary log writes of multiple transactions with a single fsync() for

better performance, and when parallel replication is enabled and configured too, secondaries will apply the binary log

writes of multiple transactions at a time (i.e., in parallel).

Further, disk and network IO can be reduced by enabling binary log compression.

MariaDB Server implements a thread pool for connections to improve the performance of concurrent, short-lived

queries. However, MariaDB Server can be configured to expose a separate port with a dedicated thread for superusers,

ensuring database administrators continue to have access when every available thread in the thread pool is executing

a query.

MariaDB Platform for Transactions: Production Deployment Checklist and Guide WHITEPAPER12

If there will be tables using InnoDB, setting the buffer pool size should be the first optimization made to increase

performance. MariaDB recommends setting the buffer pool size to 80% of the available memory. If necessary, the

buffer pool size can be increased or decreased based on the performance tuning results captured during the testing

phase.

MariaDB MaxScale can further improve performance with query result caching. When query result caching is enabled,

query results for all SELECT statements will be cached in MariaDB MaxScale by default (for maximum performance).

However, query result caching can be configured to cache the results of specific queries rather than all queries.

Tip
If query result caching must be configured to cache the results of specific queries (e.g., for security reasons), rules based on

regular expressions are faster than rules requiring query parsing, and are recommended for better performance.

Resources
Group commit documentation: https://goo.gl/4NhZvP

Parallel replication documentation: https://goo.gl/tZEvR1

Binary log compression documentation: https://goo.gl/Z1h8J6

Thread pool documentation: https://goo.gl/SGJGKw

InnoDB buffer pool documentation: https://goo.gl/sCaHDP

Query result caching documentation: https://goo.gl/NRnJYH

Preparation
It’s important to identify the information gathered in the planning phase before creating the schema. In particular:

• Use the correct storage engine when creating a table (ENGINE=InnoDB|RocksDB|Spider)

• Use encryption for tables with personal information (ENCRYPTED=YES)

• If using InnoDB, use compressed columns (COMPRESSED) if there are few text/binary fields

• If using InnoDB, use table page compression (PAGE_COMPRESSION=1) if there are many pages

• If using MyRocks, the data is compressed by default

After the schema is created, the fastest way to load data is with the LOAD DATA INFILE statement.

Tip
If data is being loaded into a MyRocks table, bulk load can be enabled for better performance. If the data is sorted by primary

key, drop all of the secondary indexes, load the data and then create the secondary indexes. MyRocks will use Fast Secondary

Index Creation for better performance. If the data is not sorted, bulk load must be disabled and unsorted bulk load enabled.

Data loading documentation: https://goo.gl/a15ZCJ

MariaDB Platform for Transactions: Production Deployment Checklist and Guide WHITEPAPER13

Resources
Compressed columns documentation: https://goo.gl/eDfEPQ

Page compression documentation: https://goo.gl/2JtUff

Testing
It’s important to test performance before going live. It not only helps identify potential performance issues; it also

helps with resource optimization during the performance testing process, where you can experiment with different

settings and options:

• InnoDB buffer pool: increase or decrease

• InnoDB redo log size: increase or decrease

• Number of connections: increase or decrease

• Connection wait time: increase or decrease

 Check for idle connections

• Thread cache size: increase or decrease

• Temporary table size: increase as needed

• Join buffer size: increase as needed

• Sort buffer size: decrease if possible

• Maximum packet size: increase as needed

During performance testing, important performance and system metrics should be monitored, including CPU,

memory, disk and network utilization.

Tip
We recommend enabling slow query monitoring and logging to identify slow queries and improve query performance.

Slow queries parameter documentation: https://mariadb.com/kb/en/library/server-status-variables/#slow_queries
Slow query log documentation: https://mariadb.com/kb/en/library/slow-query-log-overview/

Finally, before going live, it’s important to test both automatic failover and disaster recovery, including full backup and

restore with MariaDB Backup and point-in-time rollback with MariaDB Flashback.

Resources
Performance tuning presentation: https://goo.gl/A7xikm

Performance tuning documentation: https://goo.gl/niQQvn

MariaDB Backup documentation: https://goo.gl/Xc9MxS

MariaDB Flashback documentation: https://goo.gl/XZxKUA

MariaDB Platform for Transactions: Production Deployment Checklist and Guide WHITEPAPER14

MARIADB PLATFORM FOR
TRANSACTIONS:
Production Deployment Services

To help ensure that MariaDB’s customers succeed, we can provide additional expertise and staffing resources to

guarantee a smooth and successful production deployment. Our remote DBAs, enterprise architects and migration

managers can help with everything from initial planning and configuration to long-term migration and ongoing

maintenance.

Remote DBAs
MariaDB has a dedicated team of expert DBAs on staff to augment your database management teams as needed,

full-time or on demand. When it comes to production deployments (before or after), a remote DBA can perform an

initial assessment of the database and formulate replication configuration and disaster recovery plans before turning

to query optimization and performance tuning. And on a quarterly basis, they can perform ongoing security and

performance audits.

Enterprise Architects
Deploying MariaDB Platform to cloud/container infrastructure or to support a microservices architecture? MariaDB

maintains a team of enterprise architects dedicated to helping customers meet modern business requirements by

transforming database and application infrastructure – whether it’s breaking down legacy monolithic applications,

building a hybrid cloud strategy or reviewing application and database infrastructure to create a long-term roadmap

based on business and technology goals.

MariaDB’s Remote DBA is absolutely amazing. It’s an expert resource on tap – easy to contact, helpful
and very responsive to where we are using it. Every dollar we invest translates into great value in helping

us to be more agile as we strive to meet our business objectives.

– Steve Sharpe, System Architect, Teleplan

Migration Managers
When migrating from a proprietary database – including Oracle Database, Microsoft SQL Server and IBM Db2 –

MariaDB’s Red Rover Migration Practice provides the expertise and tools you need to ensure a successful migration,

from assessment to data and code migration to switchover. Migration Practice managers and architects can create

migration project plans, implement and manage them, perform skills-gap and -analysis training and help with business

continuity planning and preparation.

It’s never too early to engage MariaDB expert resources when migrating from a proprietary database and/or deploying

a production database configured to meet the requirements of business-critical, mission-critical applications.

MariaDB Platform for Transactions: Production Deployment Checklist and Guide WHITEPAPER15

ABOUT MARIADB PLATFORM
Transactions and Analytics, UNITED

MariaDB Platform is an enterprise open source database for transactional, analytical or hybrid transactional/analytical

processing at scale. By preserving historical data and optimizing for real-time analytics while continuing to process

transactions, MariaDB Platform provides businesses with the means to create competitive advantages and monetize

data – everything from providing data-driven customers with actionable insight to empowering them with self-service

analytics.

MariaDB Server
MariaDB Server is the foundation of the MariaDB Platform. It is the only open source database with the same enterprise
features found in proprietary databases, including Oracle Database compatibility (e.g., PL/SQL compatibility), temporal

tables, sharding, point-in-time rollback and transparent data encryption.

MariaDB ColumnStore
MariaDB ColumnStore extends MariaDB Server with distributed, columnar storage and massively parallel processing
for ad hoc, interactive analytics on hundreds of billions of rows via standard SQL – with no need to create and maintain

indexes, and with 10% of the disk space using high compression.

MariaDB MaxScale
MariaDB MaxScale provides MariaDB Platform with a set of services for modern applications, including transparent
query routing and change-data-capture for hybrid transactional/analytical workloads, high availability (e.g., automatic
failover) and advanced security (e.g., data masking).

