
A Decision-Tree Model for Software Evolution Analysis

Yuanfang Cai and Sunny Huynh
Department of Computer Science

Drexel University
Philadelphia, PA

{yfcai, sh84}@cs.drexel.edu

ABSTRACT
A modularization technique, or a refactoring method, ben-
efits a design if the potential changes to the design can be
well encapsulated by the technique. In general, questions
in software evolution, such as which modularization tech-
nique is better and whether it is worthwhile to refactor,
should be evaluated against potential changes. In this pa-
per, we present a decision-tree-based framework to generally
assess design modularization in terms of its changeability.
In this framework, we formalize design evolution questions
as decision problems, model software designs and potential
changes using augmented constraint networks (ACNs), and
represent design modular structure before and after envi-
sioned changes using design structure matrices (DSMs) de-
rived from ACNs. We formalize change impacts using an
evolution vector to precisely capture well-known informal de-
sign principles. For the purposes of illustration and prelim-
inary evaluation, we use this model to compare the aspect-
oriented and object-oriented observer pattern in terms of
their ability to accommodate envisioned changes. The re-
sults confirm previous results, but in formal and quantita-
tive ways. We also show that this approach can be general-
ized to real designs by applying our approach to the partial
refactoring decision-making problem of the Galileo fault tree
analysis tool.

1. INTRODUCTION
People have long recognized that evolvability, achieved most
fundamentally by appropriate modularity in design, can have
enormous technical, organizational and ultimately economic
value. However, as a discipline, we still lack the basic sci-
ence needed to analyze fundamental design decisions such
as whether it is worthwhile to refactor existing system, or
how to best accommodate envisioned changes.

Each modularization technique, such as aspect-programming
techniques or a design pattern, provides one way to let some
part of a system change independently of all other parts. A
modularization technique, or a refactoring method, benefits

a design when the potential changes to the design can be well
encapsulated by the technique [20, 24, 14, 5]. In this paper,
we present a decision-tree-based framework to generally as-
sess design modularization in terms of its changeability.

Analyzing design modularity in general requires a design
modeling technique independent of particular modularity
techniques and language paradigms. We have developed a
framework to formally model software designs using aug-
mented constraint networks (ACNs) [6, 4], in which design
dimensions and environment conditions are uniformly mod-
eled as variables, possible choices as values of variables, and
the relations among decisions as logical constraints. The
ACN modeling formalizes the key notions of Baldwin and
Clark’s design rule theory and Parnas’s information hiding
criteria [2, 20, 4]. The supporting prototype tool, Simon,
supports basic design impact analysis and the automatic
derivation of design structure matrices (DSMs) [6, 7, 4].

In our framework, we first use ACNs to formally model both
software designs and potential changes, and represent design
modular structure using DSMs automatically derived from
ACNs. Second, we formalize design evolution questions as
decision problems, modeling the decision making procedure
as a design tree (DT). Each node of a DT models a evolution
decision, such as the choices of design patterns, a refactoring
mechanism, or a potential change. Each decision is associ-
ated with an ACN modeling the design resulting from the
decision. Finally, the user can compare the design modular
structure before and after envisioned changes using design
structure matrices (DSMs) and ACNs. We formalize the
comparison using a evolution vector to capture well-known
but informal design principles, such as maximizing cohe-
sion, minimize coupling, open to extension, close to modifi-
cation [21, 12].

People have been analyzing design evolvability and change-
ability in qualitative, intuitive, and heuristic ways. For ex-
ample, Hannemann and Kiczales used a well known and
widely-used Figure Editor (FE) [15, 14, 11] example to com-
pare the evolvability and modularity property of using aspect-
oriented (AO) versus object-oriented (OO) paradigm to im-
plement design patterns. They show the actual code im-
plementing these choices as the evidence of their analysis.
However, designers frequently face questions of the like be-
fore coding. For the purpose of illustration and preliminarily
evaluation, we model the comparison of AO observer pattern
vs. OO observer pattern using our evolution model against



potential changes mentioned in their paper, and compare
our quantitative results with their informal analysis.

To show that our approach can be generalized to real de-
signs, we model and analyze part of the Galileo dynamic
fault tree analysis tool, developed at the University of Vir-
ginia for production use at NASA [25, 9]. The Galileo
designers once faced a situation when they had to make
a decision about how to restructure part of the system.
They reached a decision based on discussions and argu-
ments, rather than rigorous analysis. Modeling and ana-
lyzing this historical scenario using our decision tree model,
the designers are now able to compare different decisions
comprehensively and justify their decision quantitatively.

Through these case studies, we show that (1) our framework
is general enough to account for the OO and AO modular-
ity in uniform, declarative terms; (2) our framework auto-
mates Hannemann and Kiczales’s evolvability and modular-
ity analysis precisely; and (4) the result is both generalizable
and scalable to real designs.

The rest of this paper is organized as follows. Section 2 uses
the figure editor example to illustrate how to generally repre-
sent software designs using ACN and DSM models, indepen-
dent of modularization techniques and language paradigms.
Section 3 presents our evolution model and preliminary eval-
uation results. Section 4 presents our case study on Galileo.
Section 5 discusses related work. Section 6 concludes.

2. DESIGN REPRESENTATIONS
In this section, we use a Figure Editor (FE) example [16, 14]
to illustrate how to use design structure matrices (DSMs)
and augmented constraint networks (ACNs) to generally
model software designs and potential changes, which pro-
vides the foundation for our changeability analysis frame-
work. The Figure Editor is a tool for editing drawings com-
prising points and lines (figure elements), where a screen
displays each figure element, always reflecting the figure el-
ements’ current states.

2.1 Design Structure Matrices
Design Structure Matrix (DSM) modeling originated with
the work of Steward dating to the 1960s [22], and has been
further developed and applied in the design, analysis and
management of many large-scale engineering systems by Ep-
pinger [10] and others. DSMs are the primary representa-
tions at the heart of Baldwin and Clark’s developing theory
of the economics of modularity [2].

DSMs present in a graphical form the pair-wise dependence
structure of designs. The upper left DSM shown in Figure 2
models the figure editor design using object-oriented ob-
server pattern (generated by Simon). The rows and columns
of a DSM are labeled with design variables, representing
dimensions for which the designers must make design de-
cisions. A marked cell indicates that the decision of the
dimension on the row depends on the decision of the dimen-
sion on the column. The cell in row 6, column 1, indicates
that how the Point should be designed depends on the no-
tification policy in use.

DSM modeling is capable to represent a wide range of de-

sign decisions, to model dominance relations, a key property
of Baldwin and Clark’s notion of design rule, by asymmet-
ric dependencies, and to represent multiple modularization
methods by reordering the columns and rows of a matrix.
Given these advantages, Sullivan et al. [23] showed that
Baldwin and Clark’s DSM can be extended with environ-
ment parameters, and thus precisely account for Parnas’s
information hiding criterion.

However, DSM modeling does not appear to be expressive
enough to support precise design analysis or a rigorously
formal theory of coupling in design. First, we have found
that building such design models manually is error-prone
and time-consuming. Our recent work [6] has shown errors
in published DSMs. Many of the errors are due to the dif-
ficulty of seeing transitive relations among dependencies; or
to the lack of any precise definition of dependence. Second,
a DSM only represents design dimensions, but not concrete
choices within each dimension nor the semantics of the con-
straints that relate decisions across dimensions. For exam-
ple, Gamma et al. [11] mentioned that possible choices for
the notification policy could be either push or pull, each hav-
ing different consequences. DSMs do not explicitly express
these choices, nor do they support the analysis of their con-
sequences. Third, there are usually multiple ways to accom-
modate a change, but a DSM model does not reveal them,
and the exact meaning of a mark becomes ambiguous.

2.2 Augmented Constraint Network
To address these problems, our recent work [6] presents the
Augmented Constraint Network (ACN) as a formal design
representation better subject to automated analysis of the
design evolvability and economic-related properties. A DSM
can be automatically generated from an ACN. As a result,
our ACN modeling has the advantages of DSM modeling
and overcomes the shortcomings. The core of an ACN is a
finite-domain constraint network (CNs) [19], which consists
of a set of design variables modeling design dimension or
relevant environmental condition, and a set of logical con-
straints modeling the relations among them. Each design
variable has a domain that comprises a set of values, each
representing a decision or condition. For example, we can
model the notification policy as the following scalar design
variables: spec notify policy(push, pull).

A design decision or environmental condition is represented
by a binding of a value from a domain to a variable. We
model dependencies among decisions as logical constraints.
Figure 1 shows a constraint network modeling object-oriented
observer pattern. Line 13 indicates that the current adt subject
design is based on the assumption that a hash table is used
as the data structure (mapping ds) , the Observer interface
is as originally agreed (adt observer), and the push model is
used as the notification policy (spec notify policy). We use
orig (short for original) to generally represent a currently
selected design decision in a given dimension, and use other
as a value to represent unelaborated possibilities.

Hannemann and Kiczales [15] mentioned several changes of
the observer pattern, for example, what if the client re-
quires the Screen to be both a subject and an observer?
We can model such a change as a constraint too. Mak-
ing Screen both a subject and an observer just requires the



1: spec_notify_policy:{push,pull};

2: spec_update_policy:{orig,other};

3: mapping_ds:{hash,other};

4: color_policy_observing:{orig,other};

5: adt_observer:{orig,other};

6: adt_subject:{orig,other};

7: point:{orig,other};

8: line:{orig,other};

9: screen:{orig,other};

10: line = orig => adt_subject = orig &&

color_policy_observing = orig;

11: screen = orig => adt_observer = orig;

12: screen = orig => spec_update_policy = orig;

13: adt_subject = orig => mapping_ds = hash &&

adt_observer = orig &&

spec_notify_policy = push;

14: point = orig => adt_subject = orig &&

color_policy_observing = orig;

Figure 1: The FE OO Observer Pattern

Screen class extend the abstract subject interface, and re-
spect color observing policy, such as invoking notification
function whenever the color changed:
screen = orig => adt_subject = orig &&

color_policy_observing = orig;

We augment a CN with a pair-wise relation to model the
dominance relations among design decisions. For example,
agreed interfaces often dominate subsequent implementa-
tions. Another instance is that environment conditions are
usually out of the designer’s control. For example,
(subject, spec_notify_policy)

is a member of the dominance relation, modeling that the
decision on notification policy is dominating. Another aug-
mentation is a clustering relation on variables to model the
fact that a design can be modularized in different ways.

From an ACN, we can derive a non-deterministic automa-
ton, which we call a design automaton (DA), to explicitly
represent the change dynamics within a design space [6, 7,
4]. A DA captures all of the possible ways in which any
change to any decision in any state of a design can be com-
pensated for by minimal perturbation, that is, changes to
minimal subsets of other decisions, enabling basic design
impact analysis (DIA) that have fully automated and quan-
tified Parnas’s changeability analysis [6, 4].

From a DA, we can also derive a pair-wise dependence rela-
tion (PWDR). We define two design variables to be pair-wise
dependent if, for some design state, there is some change to
the first variable for which the second must change in at
least one of the minimal compensating state changes. From
a derived PWDR and a selected clustering method of the
ACN, a DSM can be automatically generated by our tool,
Simon. As a result, we can in principle apply all the analysis
capabilities developed for DSMs to our much more complete
and precise models.

Although the basic design impact analysis is sufficient to
analyze the impact of changes in design decisions within a
design space determined by an ACN, it is not adequate to

analyze the impact of design decisions that could change the
structure of the design space, for example, by introducing
new design dimensions. The decisions to refactor the exist-
ing system and to apply a new design pattern are examples.
In the next subsection, we model such design decisions using
a decision-tree based framework to generally assess design
modularity and evolvability.

3. SOFTWARE EVOLUTION MODEL
Hannemann and Kiczales [15] mentioned several possible
changes in Figure Editor observer pattern design, and com-
pared the AO observer pattern with the OO observer pattern
in terms of their ability to accommodate these changes. To
illustrate our approach, we formalize the comparison prob-
lem using our decision-tree-based framework, and quantify
the comparision using evolution vectors. To evaluate our
apporach, we compare our quantitative results with their
informal analysis results.

3.1 Decision Tree Modeling
Hannemann and Kiczales’s analysis focused on answering
the following changeability questions: (1) what are the con-
sequences if the client changes the role assignment, requiring
the Screen to be both a subject and an observer? (2) In the
original design, the color of subject figure elements is the
only state of interest that needs to be observed. What if the
positions of the figure elements also need to be observed?

We formulate their analysis as decision problems modeled
by a decision tree shown in Figure 2. The node V0 is the
starting point. Square nodes represent design decisions, and
round nodes represent the resulting design of a given deci-
sion. For example, square node AO represents the decision
to use AO paradigm. Node DAO represents the correspond-
ing AO design.

Figure 2 models a decision-making procedure: we first repre-
sent the choice of using AO or OO paradigm as two decisions
leading to two designs, DAO and DOO. We model each de-
sign as an ACN. Figure 1 and Figure 3 show the constraint
networks of the DOO and DAO respectively. Note that we
represent object-oriented design and aspect-oriented design
in an uniformed way. In the aspect design, an abstract as-
pect is employed to encapsulate such decisions as what data
structure is used to store the mapping between the observer
and the subjects. This abstract aspect can be extended with
other aspects, serving as an interface. We model the inter-
face part of the abstract aspect as abstract_protocol, as
shown in line 8, Figure 3, and model the decisions it encap-
sulates as abstract_protocol_impl (line 9).

After that, we view the envisioned two changes, the new role
assignment and the additional position observing, as subse-
quent decisions, and model these decisions as variables and
model their relations as logical constraints. As an example,
Figure 4 shows the constraint network of using AO design to
accommodate the new position observing policy. This par-
tial constraint network will be combined with the original
one as shown in Figure 3 to form a new design, DAO pos.

Making the two changes in the OO and AO designs respec-
tively leads to four designs, DOO role, DOO pos, DAO role, and
DAO pos, each represented by a new ACN. We derive the



OO

AO

DOO

V0

DesignDecison Decison

New Role

Assignment

Observe 

Position

DOO_role

DAO

New Role

Assignment

Observe 

Position

DAO_role

DAO_pos

DOO_pos

Design

Figure 2: Software Evolution Model

1: spec_notify_policy:{push,pull};

2: spec_update_policy:{orig,other};

3: mapping_ds:{hash,other};

4: color_policy_observing:{orig,other};

5: point:{orig,other};

6: line:{orig,other};

7: screen:{orig,other};

8: abstract_protocol:{orig,other};

9: abstract_protocol_impl:{orig,other};

10: color_con_protocol:{orig,other};

11 abstract_protocol_impl = orig => mapping_ds = hash

&& abstract_protocol = orig

&& spec_notify_policy = push;

12: color_con_protocol = orig =>

color_policy_observing = orig;

13: color_con_protocol = orig =>

abstract_protocol = orig

&& line = orig && point = orig && screen = orig

&& spec_update_policy = orig;

Figure 3: The FE AO Observer Pattern

1: position_con_protocol:{orig,other};

2: position_policy_observing:{orig,other};

3: position_con_protocol = orig =>

position_policy_observing = orig;

4: position_con_protocol = orig =>

abstract_protocol = orig && line = orig &&

point = orig && screen = orig &&

spec_update_policy = orig;

Figure 4: A Change: Position Observing

DSMs of all six ACNs, as associated each design node. For
example, the DOO DSM is derived from the ACN in Fig-
ure 1. To decide which paradigm can better accommodate
envisioned changes, we just need to compare the differences
between the designs with and without these changes. To
facilitate the comparison, we first formalize the differences
between two designs using an evolution vector to capture
several well-know but informal design principles.

3.2 Evolution Vector
Given an ACN and the derived pair-wise dependence rela-
tions (PWDR), the coupling level of a design can be reflected
by the density of the pairs:

density =
#PWDR

#V ariables2 (1)



For example, the density of DOO is 21%. We define the
differences of two designs, D and D′, as an evolution vector:
∆(D′ − D) = 〈∆density, ∆modifications, ∆size〉,
which consists of the following dimensions, each capturing
an informal design principle:

• ∆density models the changes in coupling density, as-
sessing design coupling structure variation. Minimiz-
ing coupling is an important, well-known, but informal
design principle [21]. A negative ∆density indicates
decreased coupling among design decisions, which is
favorable.

• ∆modifications models the number of existing design
decisions that have to be revisited because of newly
introduced design dimensions, such as a new feature.
This number reflects another principle of design evolu-
tion: close to modification and open to extension [12].
Ideally, a design should accommodate new features
through extension, and avoid changing existing part
that has been debugged and proved to be correct. This
number only applies when new dimensions are added
to the design. To determine the effects of changing
the decision on an exsiting dimension, that is, chang-
ing the value of a variable, the basic design impact
analysis suffices in that it computes in detail what are
the possible changes to which other variables [6].

• ∆size models changes in the size of the design space.
More design dimensions indicates more complexity. Us-
ing modularization techniques incorrectly could cause
class explosion, another direction of design evolution
the designer should pay attention to [11].

We have shown that the ACN and DSM modeling can pre-
cisely capture Parnas’s information hiding criteria, against
with each design can be evaluated [23, 6, 7, 4]. We have also
shown that using the design impact analysis function of Si-
mon, we can analyze the respective consequences of changing
common design decisions for two design alternatives, such as
the different impact of changing the notification policy from
push to pull in AO and OO designs respectively. Simon
shows that in the OO design, three variables have to be re-
visited, while in the AO design, only one variable should be
revisited. Counting the number of variables affected by a
change in a decision is clearly insufficient to determine costs
of change, but identifying what must change is a critical
step.

The information hiding and design impact analysis supported
by Simon work within a single ACN model. By contrast, the
evolution vector reflects structural changes between two de-
signs, and the vector summarizes the results of performing
design impact analysis within each design respectively.

In addition, the evolution vector is extensible. For example,
we could add a new dimension, ∆nov, to calculate Baldwin
and Clark’s net option value (NOV) based on DSM model-
ing [2]. The NOV analysis involves estimating such param-
eters as technical potentials, which is out of the scope of
this paper, and we only consider evolution vectors with the
above three dimensions.

3.3 Analysis Results
Given the decision tree model and the evolution vector, we
can now quantitatively assess the OO vs. AO observer pat-
tern modularity against the envisioned changes:

(1) What is the difference of using AO vs. OO to design an
observer pattern?

To analyze this problem, we need to compute ∆(DAO −
DOO). DOO has 9 variables, DAO has 10 variables, and
∆size = 1. DOO has 17 coupling pairs, and density = 21%,
DAO has 11 pairs, and its density = 11%. As a result,
∆density = −10%. Since we are not modeling how to
change an OO design to an AO design, the ∆modificaiton
is not applicable. As a result, we get:
∆(DAO − DOO) = 〈∆density = −10%, N/A, ∆size = 1〉,
showing that the AO design lowers the coupling level but
slightly increases the complexity.

From the DSMs associated with DAO and DOO, we observe
that the decisions on the notification and update policies no
longer influence concrete subjects, Point and Line. Instead,
only the abstract and concrete protocols depend on these
policies, indicating the localization of crosscutting decisions.

(2) What is the impact of changing the role assignment so
that the Screen is both a subject and an observer?

We first observe that no new dimension is introduced by
this change, and only the constraints among the variables
are changed. As a result, the ∆modification dimension is
not applicable. To analyze the different impact of change on
the OO and AO design respectively, we first the following
evolution vectors:

• The change impact on the OO design:
∆(DOO role − DOO) =
〈∆density = 5%, N/A, ∆size = 0〉,
meaning that the level of coupling increases.

• The change impact on the AO design:
∆(DAO role − DAO) =
〈∆density = 0, N/A, ∆size = 0〉,
which indicates that the coupling density remains un-
changed after accommodating this new feature.

Comparing these vectors quantitatively proves that the AO
design is better than the OO design in term of the ability
of accommodating this particular change. From the DSMs,
we can also observe that the DAO role DSM is exactly the
same as the DSM of DAO, which means that the AO design
localizes this change completely without incurring any ad-
ditional dependencies or new dimensions. The result shows
that the AO paradigm has obvious advantages over the OO
paradigm in terms of accommodating this particular change.

(3) What if the observing policy changed so that the positions
of the figure elements should also be observed in addition to
the colors?

To analyze this problem, we compute the following vectors:



• The change impacts on the OO design:
∆(DOO pos − DOO) =
〈∆density = −2%, ∆modifications = 2, ∆size = 1〉.
From this vector, we observe that although the level
of coupling is decreased, two existing decisions have to
be revisited.

• The change impact on the AO design:
∆(DAO pos − DAO) =
〈∆density = 1%, ∆modifications = 0, ∆size = 2〉.

We observe that although the AO design incurs more de-
pendences to accommodate this change, the existing system
is not affected because the ∆modification = 0. It indicates
that the design can be extended to accommodate this partic-
ular change without affecting existing decision. On the other
hand, we need one more variable position_con_protocol to
model the new aspect handling position observation, slightly
increasing design complexity.

At this point, if there are additional possible changes, we
can extend the decision tree for further analysis. For exam-
ple, if more figure elements are going to be added, taking
the roles of subjects, such as circles and triangles, the AO
paradigm will be better since it can localize the task of role
assignment. On the other hand, if the figure elements are
fixed, but the number of states that need to be observed
keeps increasing, using AO design requires adding more as-
pects for each observable dimension, which will increase the
complexity of the whole design.

In summary, using the decision tree model and evolution
vectors, we have quantitatively captured Hannemann and
Kiczales’s qualitative analysis, revealing how these high-
level design decisions impact the design coupling structure
visually and precisely.

4. GALILEO
To show that our approach can be generalized to real sys-
tems, we apply it to Galileo, a dynamic fault tree analysis
tool [25, 9]. Galileo has about 35,000 lines of C++ code
excluding library and generated code. The design and im-
plementation of this system was independent of the work
presented in this paper. It has evolved continually over eight
years, with hundreds of files and many student developers.

During maintenance and feature enhancement stages, we
found several problematic issues. In particular, we found
that it is hard to justify different design error-handling refac-
toring proposals. We modeled these historical situations us-
ing the decision tree model, compute the evolution vectors
for each proposed refactoring method with envisioned future
changes, and found that our analysis provides quantitative
results that are consistent with our earlier refactoring deci-
sions.

Error handling was suggested to be refactored to be more
consistent and descriptive. Two dimensions involved in error
handling were the support for multiple error types (e.g., syn-
tax error and semantics error), and the support for multiple
views (Word97, Visio5). According to different types of er-
rors, the error handling module should mark the views where
an error happens, jump to the error point, give messages,

and clear the marks once the error is corrected. We call these
actions a marking sequence, modeled by MarkSequence.

Four refactoring mechanisms were proposed in relation to
the addition of sophisticated error handling to Galileo. The
designer faced the problem of choosing the best one. We
modeled this situation as nodes D1, D2, D3, D4 in the
decision tree as shown in Figure 5.

Figure 5: Select a refactoring method

The first option requires that each error object knows in
which view an error happens, and implements the marking
sequence. Figure 6 shows the constraint network modeling
the constraints among the view types, error types, and the
mark sequence in option 1. The DSM generated by Simon
for option 1 is shown in Figure 7 (A) The second option is
symmetric to the first one, requiring that each view knows
what type of error happened, and that it then implements
the marking sequence. Figure 7 (B) shows the DSM for
option 2.

At this point, a marker class, modeled by markers, was pro-
posed to take the responsibility of implementing a mark-
ing sequence for each combination of error and view types.
Given the marker classes, the third and fourth options were
proposed. The major difference of the third and fourth op-
tions was in who deciding which error happened in which
view and in invoking the corresponding marker object. The
third option required each error objects to take this re-
sponsibility and the fourth option demanded a new class,
ErrorToMark, to do the job. We similarly modeled these

1: word_view:{orig,other};

2: visio_view:{orig,other};

3: MarkSequence:{orig,other};

4: syntax_errors:{orig,other};

5: semantics_errors:{orig,other};

6: word_view = orig => syntax_errors = orig &&

semantics_errors = orig && MarkSequence = orig;

7: visio_view = orig => syntax_errors = orig &&

semantics_errors = orig && MarkSequence = orig;

Figure 6: Error Handling Refactoring Option 1



options as augmented constraint networks, and generated
their DSMs using Simon, as shown in Figure 7 (C) and (D).

By comparison, we can tell that options 1 and 2 are sim-
pler in the sense that they involve fewer design dimensions.
However, although the number of dependences and number
of variables are fewer in the option 1 and 2, the density of
the dependencies in these two DSMs are higher: of the 25
cells, there are 12 cells (48%) marked as dependencies. The
dependence density is 44% for option 3, and is 26% for the
DSM of option 4. Option 4 is the best in terms of coupling
structure.

We now evaluate which option is best against possible future
changes. One envisioned change is to add new views to the
system, for example, an Excel view and an XML view, mod-
eled by two new variables, excel_view and xml_view. We
model the decision to add these new views as new decisions,
shown as node D1’, D2’, D3’, and D4’. For each decision
We develop an ACN, and generate their DSMs as show in
Figure 8.

To quantitatively analyze these decisions, we compute the
following evolution vectors:

• ∆(D1′ − D1) =< ∆density = 2%,
∆modifications = 3, ∆size = 2 >;

• ∆(D2′ − D2) =< ∆density = −15%,
∆modifications = 2, ∆size = 2 >;

• ∆(D3′ − D3) =< ∆density = −36%,
∆modifications = 3, ∆size = 6 >;

• ∆(D4′ − D4) =< ∆density = −30%,
∆modifications = 2, ∆size = 6 >;

We observed that the design spaces are expanded similarly
in all cases. Although the sizes of option 1 and option 2
increased less under the change, the design decisions are
highly coupled. Given the change, the coupling density in-
creased in option 1. The coupling density of option 3 and
option 4 are dramatically decreased after the change, mean-
ing that the newly added dimensions accommodated most
of the changes.

Comparing option 3 and option 4, although the density
decrement of option 4 is a little less than that of option
3, the design of option 4 (18%) has much less dependence
density than option 3 (28%). In addition, in the design of
option 4, fewer existing decisions will be affected.

In real implementation, the major difference is that when
new views are added, options 1, 2, and 3 require changing
more places than option 4 does. For example, according to
Figure 8, for the design using option 3, syntax_errors and
synmantics_errors are going to be changed. The option 4
design requires only change to ErrorToMark. This analysis
quantitatively validates the choice that we actually made:
to use the fourth option.

In summary, our experiments support the claim that our
approach can be generalized to real systems, and that our

framework is expressive enough to capture varieties of design
phenomena uniformly and analyze these problems automat-
ically, precisely and quantitatively.

5. RELATED WORK
Baldwin and Clark’s Net Option Value (NOV) [2] analysis
provides a general way to statically and quantitatively assess
design modularity based on DSM modeling. Both Sullivan
et al. [23] and Lopes et al [18] applied this method to soft-
ware design comparison and evaluation. The NOV analysis
also takes into account the size of the design (complexity),
and the ripple effects. The challenge for NOV analysis is the
necessity to estimate technical potential of each module. In-
stead of using one number to assess design modularity, our
approach allows the designer to comprehensively evaluate
design modularity and changeability from multiple angles,
making the trade-offs among between these dimensions ex-
plicitly.

Software design space, feature modeling and variability mod-
eling in product family modeling has been widely studied.
Feature modeling supports automatic program variations,
which have also been widely studied in Batory’s work on
generic programming [3], Goguen’s work on parameterized
programming [13] and Czarnecki work on generative pro-
gramming [8]. While their purpose is to synthesize complex
software systems from libraries of reusable components, our
purpose is to rigorously support modularity analysis and
decision-making. Our approach is more general in that we
not only model and analyze features, which are one kind of
design decisions, but also broader decisions such as refactor-
ing options, design patterns, and aspects. We aim to analyze
the design modular structures and their implications, while
they aim to analyze feature properties.

Similar to our design space modeling, Lane [17] models the
structure of software systems as design spaces by identifying
the key functional choices, and classifying the alternatives
available for each choice. Their notions of rules, similar
to our constraints, are formulated to relate choices within a
design space. Our approach is more general in that we model
broader decision-making phenomena and their impacts, such
as a decision to choose a design pattern or a modularization
technique. Traditional impact analysis research focuses on
change issues at program level, as summarized in [1], while
our approach works at abstract design level.

6. CONCLUSION
In order to assess software modularity uniformly against its
ability to accommodate changes, we presented a decision-
tree-based assessment framework to facilitate design change-
ability analysis. In this framework, we model software de-
signs and potential changes uniformly using augmented con-
straint networks, independent of language paradigm and
modularization techniques. We model design modular struc-
ture using derived design structure matrices, and define evo-
lution vectors to quantitatively reflect a number of informal
design principles. Using this framework, we analyzed the
object-oriented observer pattern versus aspect-oriented ob-
server pattern in terms of their ability to accommodate en-
visioned changes, and similarly compared four refactoring
methods for Galileo error handling. The result shows that
our model quantitatively and formally verified previously



(A) Error Handling Option 1 (B) Error Handling Option 2

(C) Error Handling Option 3 (D) Error Handling Option 4

Figure 7: Design Structures using Different Error Handling Options

informal analysis results. The evolution vector can be ex-
tended with additional dimensions, such as net option val-
ues, having the potential to bridge the gap between software
design modeling and rigorous economic analysis.

7. REFERENCES
[1] R. Arnold and S. Bohner. Software Change Impact

Analysis. Wiley-IEEE Computer Society Pr, first
edition, 1996.

[2] C. Y. Baldwin and K. B. Clark. Design Rules, Vol. 1:
The Power of Modularity. The MIT Press, 2000.

[3] D. Batory, V. Singhal, J. Thomas, S. Dasari,
B. Geraci, and M. Sirkin. The genvoca model of
software-system generators. IEEE Software,
11(5):89–94, Sept. 1994.

[4] Y. Cai. Modularity in Design: Formal Modeling and
Automated Analysis. PhD thesis, University of
Virginia, Aug. 2006.

[5] Y. Cai and S. Huynh. An evolution model for software
modularity assessment. In Proceedings of the First
Workshop on Assessment of Contemporary
Modularization Techniques (ACoM), 2007.

[6] Y. Cai and K. Sullivan. Simon: A tool for logical
design space modeling and analysis. In 20th
IEEE/ACM International Conference on Automated

Software Engineering, Long Beach, California, USA,
Nov 2005.

[7] Y. Cai and K. Sullivan. Modularity analysis of logical
design models. In 21th IEEE/ACM International
Conference on Automated Software Engineering,
Tokyo, JAPAN, Sep 2006.

[8] K. Czarnecki and U. Eisenecker. Generative
Programming: Methods, Tools, and Applications.
Addison-Wesley Professional, 1st edition edition, Jun
2000.

[9] J. B. Dugan, K. J. Sullivan, and D. Coppit.
Developing a high-quality software tool for fault tree
analysis. In Proceedings of the International
Symposium on Software Reliability Engineering, pages
222–31, Boca Raton, Florida, 1–4 Nov. 1999. IEEE.

[10] S. D. Eppinger. Model-based approaches to managing
concurrent engineering. Journal of Engineering
Design, 2(4):283–290, 1991.

[11] R. J. Erich Gamma, Richard Helm and J. Vlissides.
Design Patterns: Elements of Resuable
Object-Oriented Software. ADDISON-WESLEY, Nov
2000.

[12] E. Freeman, E. Freeman, B. Bates, and K. Sierra.
Head First Design Patterns. O’Reilly Media, 1st
edition edition, Oct 2004.



(A) Error Handling Option 1 with New Views (B) Error Handling Option 2 with New Views

(C) Error Handling Option 3 with New Views (D) Error Handling Option 4 with New Views

Figure 8: Add New Views based on Different Error Handling Options

[13] J. A. Goguen. Reusing and interconneting software
components. IEEE Computer, 19(2):16–28, Feb. 1986.

[14] W. G. Griswold, K. Sullivan, Y. Song, N. Tewari,
M. Shonle, Y. Cai, and H. Rajan. Modular software
design with crosscutting interfaces. IEEE Software,
Special Issue on Aspect-Oriented Programming,
January/February 2006 (in press)., Feb 2006.

[15] J. Hannemann and G. Kiczales. Design pattern
implementation in java and aspect. 2002.

[16] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. V. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-oriented programming. In Proceedings of the
European Conference on Object-Oriented Programming
(ECOOP), Finland, June 1997. Springer-Verlag.

[17] T. G. Lane. Studying software architecture through
design spaces and rules. Technical Report
CMU/SEI-90-TR-18, CMU, 1990.

[18] C. V. Lopes and S. K. Bajracharya. An analysis of
modularity in aspect oriented design. In AOSD ’05,
pages 15–26, New York, NY, USA, 2005. ACM Press.

[19] A. Mackworth. Consistency in networks of relations.
In Artificial Intelligence, 8, pages 99–118, 1977.

[20] D. L. Parnas. On the criteria to be used in
decomposing systems into modules. Communications
of the ACM, 15(12):1053–8, Dec. 1972.

[21] W. P. Stevens, G. J. Myers, and L. L. Constantine.
Structured design. IBM Systems Journal,
13(2):115–39, 1974.

[22] D. V. Steward. The design structure system: A
method for managing the design of complex systems.
IEEE Transactions on Engineering Management,
28(3):71–84, 1981.

[23] K. Sullivan, Y. Cai, B. Hallen, and W. G. Griswold.
The structure and value of modularity in software
design. SIGSOFT Software Engineering Notes,
26(5):99–108, Sept. 2001.

[24] K. Sullivan, W. Griswold, Y. Song, and Y. C. et al.
Information hiding interfaces for aspect-oriented
design. In ESEC/FSE ’05, Sept 2005.

[25] K. J. Sullivan, J. B. Dugan, and D. Coppit. The
Galileo fault tree analysis tool. In Proceedings of the
29th Annual International Symposium on
Fault-Tolerant Computing, pages 232–5, Madison,
Wisconsin, 15–18 June 1999. IEEE.


