
CRITICAL P A T H TRACING - A N ALTERNATIVE TO F A U L T S I M U L A T I O N

M. Abramovici
P. R. Menon
D. T. Miller

Bell Laboratories
Naperville, Illinois 60566

ABSTRACT

We present an alternative to fault simulation, referred to as critical path
tracing, that determines the faults detected by a set of tests using a
backtracing algorithm starting at the primary outputs of a circuit.
Critical path tracing is an approximate method, but the approximations
introduced occur seldom and do not affect its usefulness. This method is
more efficient than conventional fault simulation.

1. INTRODUCTION

Fault simulation is performed for the following applications:

• grade a test by determining its fault coverage

• construct a fault dictionary

• in the context of test generation, determine a yet undetected fault as
the next target for test generation

• post-test diagnosis [ArWa81].

There are three general methods for fault simulation, namely parallel,
deductive, and concurrent [BrFr76]. In addition, two other methods
deal only with combinational circuits, namely single fault propagation
[Roth67, Ozgu79] and Hong's method [Hong78]. A combination o f
these two techniques is used in the PODEM-X test generation system
[Goel80b, GoRoS1]. Specialized methods for combinational circuits are
justified by the widespread use of design for testability techniques, such
as LSSD [EiWi77], that transform a sequential circuit into a
combinational one for testing purposes. Even for combinational
circuits, the time spent in fault simulation alone is proportional to n 2,
where n is the number of gates in the circuit [Gocl80a]. The increase
in the gate count in VLSI circuits requires more efficient methods for
test evaluation and test generation.

In this paper we present an alternative to fault simulation, referred to
as critical path tracing. It consists of simulating the fault-free circuit
(true-value simulation) and using the computed signal values for
tracing paths from primary outputs (POs) towards primary inputs (PIs)
to determine the detected faults. Compared with conventional fault
simulation, the distinctive features of critical path tracing are:

• it directly identifies the fau l t s detected by a test, without simulating
the set of all possible faults. Hence all the work involved in
propagating the faults that are not detected by a test towards the
POs is avoided.

• it deals with fau l t s only implicitly. Therefore we no longer need
fault enumeration, fault collapsing, fault partitioning (for multipass
simulation), fault insertion and fault dropping.

• it is based on a path tracing algorithm that does not require
computing values in the faulty circuits by gate evaluations or fault
list processing

• it is an approximate method.

Consequently, critical path tracing is faster and requires less memory
than conventional fault simulation. The approximation occurs seldom
and consists in not marking as detected some faults that are actually

detected by the evaluated test. We shall show later that this
approximation does not affect the usefulness of the method.

Critical path tracing can be extended to synchronous sequential circuits
using an iterative array model [BrFr76]. In this paper we will restrict
ourselves to combinational circuits.

2. MAIN CONCEPTS

2.1 Criticality and Sensitivity

We will use the concept of a critical value as defined in [Wang75].

Definition 1: A line l has a critical value v in the test (vector) t i f f t
detects the fault I s-a-~. A line with a critical value in t is said to be
critical in t.

Note that unlike the D notation of the D-Algorithm [Roth67], a critical
value always indicates the detection of a fault.

Clearly, the POs are critical in any test. Our test evaluation method
consists of determining paths of critical lines, called critical paths, by a
backtracing process starting at the POs. Finding the critical lines in a
test t, we immediately know the faults detected by t.

Definition 2: A gate input i is sensitive if complementing the value of i
changes the value of the gate output.

Critical path tracing starts after the true-value simulation of the circuit
for a test t has be.on performed. To aid the backtracing, we mark the
sensitive gate inputs during the true-value simulation. The sensitive
inputs of a unate gate with two or more inputs are easily determined as
follows:

1) if only one input i has a Dominant Logic Value (DLV), then i
is sensitive. (AND and N A N D have DLV 0; OR and NOR
have DLV 1)

2) if all inputs have value DLV, then all inputs are sensitive,

3) otherwise no input is sensitive.

The marking of the sensitive gate inputs during true-value simulation
involves little overhead, since scanning the gate inputs for DLVs is
inherent in commonly used methods for gate evaluation.

2.2 Fanout-Free Circuits

First we illustrate critical path tracing in a fanout-free circuit, using the
example in Figure 1. Figure la shows the results of true-value
simulation with the sensitive inputs marked by dots. Figure l b shows
the critical paths by heavy lines. For a fanout-free circuit (which
always has a tree structure), critical path tracing is a simple tree
traversal procedure that marks as critical and recursively follows in turn
every sensitive input of a gate with critical output. This is based on the
obvious fact that if a gate output is critical, then its sensitive inputs, if
any, are also critical. For the example in Figure 1, note how critical
path tracing completely ignores the part of the circuit bordered by the
lines B and C, since working backwards from the PO it first determines
that B and C are not critical.

Paper 15.4
214

20th Design Automation Conference

0738-100X/83/0000/021451.00 © 1983 IEEE

o - - o_q
0

' l -C)o' I 0

o
0

C] (a)

0

A

A

C

B1

Figure 2. Example of Self-Masking

(a)

I) G

c (b)

Figure 1. Critical Path Tracing
in a Fanout-Frec Circuit

A

2.3 Effects of Reconvergent Fanout

Now we shall discuss the general case of a circuit with reconvergent
fanout. Under the stuck fault model, for a signal with fanout we
distinguish between its stem and its fanout branches (FOBs). For
example, in Figure 2 the lines BI and B2 are FOBs of the stem B. The
difficulty in extending critical path tracing to circuits with reconvergent
fanout is determining when a stem is critical, given that at least one of
its FOBs is critical. In Figure 2 we cannot extend the critical path
from BI to B because the effects of the fault B s-a-O propagate on two
paths with different inversion parities such that they cancel each other
when reconverging at the gate D. This phenomenon is referred to as
self-masking.

Following Hong's approach [Hong78], we separate the test evaluation
problem into two subproblems: one deals with fanout-free regions
(FFRs) of the circuit, and the other with stems. The strategy adopted
in [Hong78] is to first determine the detectability of the stem faults by
explicit fault simulation, then trace critical paths in every FFR whose
stem fault has been detected. This mixed strategy represents an
improvement compared with the explicit simulation of all faults. Our
strategy is to determine detectability of the stem faults as they are
reached during backtracing by a novel type of analysis that, as we will
show later, is much more efficient than their explicit fault simulation.
This analysis is described in the next section.

G

Figure 3.

(b)

impact of Multiple Path Sensitization
on Critical Path Tracing

Another effect of reconvergent fanout is that faults that are detected
only by multiple-path sensitization may be declared to be undetected, as
illustrated in Figure 3a. Here none of the inputs of the gate G is
critical, but the fault on A is detected by double path sensitization. As
critical path tracing involves establishing unbroken chains of critical
lines, it will not recognize the stem A as critical in that test; therefore it
is only an approximate method. We shall discuss the implications of
this approximation in Section 4.

Note that the case when multiple paths are sensitized from a stem such
that we have DLV values at a reconvergence gate [see Figure 3(b)]
does not pose any problem for our method.

3. ~ R I T H M FOR CRITICAL PATH TRACING

3.1 Preprocessing

First we preprocess the circuit to determine its cones, where a cone is
the subcircuit feeding one PO. We represent a cone as an
interconnection of FFRs. Figure 4(b) shows these structures for the

Paper 15.4
215

x~ r - ~ _ t C ' . r ~ .
CI2 U

x Xl L O N T S

L3

(a)

h cl r'-
X2"" - - 0 I C 1 ~"

I r - l ~ ~- 1 I ~ "

I ~ r - H J - I / C I 2 ~ ~ I ~-
/Ix~ ~. I L I ~ I ~ ~ L 3 ~ - - ~ T I ~T1 I U r ~ - ~

L" 7 .I

P" ... cl

l
" "- . . I

-

, I Y~ IT3 p - - - ~
_ _ _ _ > 0

(b)

Figure 4(a). Example Circuit
(b). Partition Into Cones and FFRs

adder in Figure 4(a). The inputs of a FFR are FOBs and/or PIs. The
output of a FFR is either a PO or a stem. Note that whether a line i is
a stem may depend on the cone containing it. For example, N and CI
are stems in the cone of S, but not in the cone of CO. Constructing
cones and FFRs is commonly done as a preprocessing step in test
generation for LSSD circuits [Yama78, Goe180bl.

3.2 The Basic Structure

Figure 5 outlines the algorithm for evaluating a given test. It assumes
that true-value simulation, including the marking of the sensitive gate
inputs, has been performed. The algorithm processes every cone
starting at its PO a n d alternates between two main operations: critical
path tracing inside a FFR, represented by the procedure Extend, and
checking a stem for criticality, done by the procedure Critical. Once a
stern j is found to be critical, critical path tracing continues from j .

Figure 6 shows the recursive procedure Extend(i) that backtraces all
the critical paths inside a FFR starting from a given critical line i by
following lines marked as sensitive. Ex tend stops at FFR inputs and
collects all the stems reached in the set Stems to check.

Every stem in Stems to check has at least one critical FOB. The
algorithm always selects the highest level stem for analysis (i.e., the
closest to the PO), and hence guarantees that the status (critical/non-
critical) of all its FOBs is known. The key element in the algorithm is
the routine Critical (j) that determines whether the stem j is critical.

3.3 Determining the Criticality of a Stem

To determine the criticality of a stem, we will find out whether
self-masking occurs.

f o r e v e r y c o n e

{Stems to c h e c k - @
Extend (PO)
while (Stems_to_check ;a @)

{j = highest level stem in Stems to check
if (Critical(j)) Extend (j)

}
}

Figure 5. Algorithm for Evaluating One Test

Extend (i)
{mark i as critical
if i is a FOB

add stem(i) to Stems to check
else

for every input j of i
if (sensitive (/)) Ex tend (j)

}

Figure 6. Backtracing inside a FFR

r ~ c i [. . . .
o

I ~ "~ / I (o ,s) "" " - "-.
r. __ (O,N) ~. I ~" ~ El (O,S) --.

I , ~ ~(o,N) " ... L l (1 , s) \ . r l , " "
x ' , O . S) > - - O
Y O ~ - ~ (1 , N) ~ ~ [I / / N I ' / I I / s

I! / L I (o,~) I ~ ~ (o,~) ~ / (O,S) /
i ~ I (O,N) / / I / /

L,- / (a) v

p (1 ,A)

r ~ .~.

P \ I(O,A) "" "-
I \ a "" - I (O,A)~ I

---~t~.~/ [--4(O,AI (O,A)~-:-
I / A

i "

I /
(1,A) / /

/

(b)

Figure 7. (p,l) Labeling

A Simple Case
First we will show a simple preprocessing technique that allows us to
directly identify some stems as critical without any analysis. When a
cone is built by topological backtracing starting from its PO, with every
FFR input and output i we associate a label (v,/) defined as follows.

Definition 3: A line i has a label (p,/) if all paths from i to the PO of
the cone pass through 1, and every path from i to I has parity p.

Figure 7(a) shows the (p,/) labels in the cone of S. Clearly all inputs
of a FFR get the same I. If all the FOBs of a stem j have the same
(p,/) label, then this is assigned to the stem; otherwise j is assigned the
label (0j) . The following lemma allows us to mark stems as critical
without additional analysis.

L e m m a 1: If the label of a stem j is (p,l), where l ~ j , then whenever j
is reached by backtracing it can always be marked as critical.

Proof: Line j can be reached during backtracing only if l has already
been proved to be critical. Since all the paths from j to l have the same
parity, self-masking cannot occur between j and I. Hence the fault on j
propagates to 1, and becat~se 1 is critical, it also propagates to the PO.
Therefore j is also critical, r 'l

Figure7(a) shows the (D,/) labels for the S cone of Figure4:
According to Lemma 1, Critical will immediately return TRUE for the

P a p e r 1 5 . 4

2 1 6

0 O I"~ ~ .

I ~L . . " . . 1 c,11 ~ - - ' ~ -.
~" CI2 ~- ~-

t @ - 2 f / '~"1 / "
l , . ; / u--

Figure 8. Complete Critical Path Tracing in a Cone

stems L and T. Note that the labeling is done per cone, as L has to be
checked for criticality in the cone of CO. In our example, both L and T
have all their FOBs feeding the same FFR; Figure 7(b) shows a
different situation in which a stem (P) need not be checked.
General Case
To illustrate the principle used by Critical (j) to check a stem j that
does not satisfy Lemma 1, consider the cone of S for the test
(X,Y, CI) = 100 (see Figure8). After performing Extend(S), we
determine that T2 and N2 are critical. At this point
Stems_to_check = {T,N}. Critical(T) returns TRUE immediately and
Extend(T) flags CI2 as critical. Now Stems to check = {N, C1} and N
is selected for analysis. For the purpose of explanation only, suppose
we insert a s-a-O fault on N. The effects of this fault start propagating
along two paths, one starting at the critical FOB (N2), and the other at
the non-critical one (N1). Self-masking may occur only if the
propagation along the latter path, referred to as potentially masking,
"kills" the propagation along the critical path as illustrated in Figure 2.
It is easy to determine that this type of reconvergence does not occur in
Figure 8, since the potentially masking path is immediately stopped at
the gate T, as it enters the gate via an input not marked as sensitive.
Hence we can immediately conclude that N is critical. We emphasize
that propagation along the critical path beyond N2 is not needed
because we have determined that all the potentially masking fault
effects have disappeared. This is similar to the concepts used in single
fault propagation.
The Algorithm
Figure 9 outlines the procedure Critical(j). First it examines the (p,l)
label of the stem j to determine whether it satisfies Lemma 1. If not,
the check for the criticality of j implicitly keeps track of the
propagation of the fault effects of j along critical paths versus
propagation on potentially masking paths. The two propagation
frontiers are maintained in the sets Prop_crit and Prop_noncrit. These
sets consist only of FOBs and stems. FFRlist is the set of FFRs
directly fed by the FOBs in Propcrit and Prop_noncrit. The algorithm
always selects the lowest level FFR from FFRlist for checking, and
hence it guarantees that the status of all the FFR inputs with respect to
the propagation of the fault on j is known. The procedure FFRcheck (i)
determines the propagation of the two frontiers through FFR i; hence it
implicitly determines whether the fault effects arriving on FFR inputs
reach its output. The salient feature of FFRcheck (i) is that it usually
"jumps" from the inputs of FFR i directly to its output without tracing
through any gate inside the FFR. The following example illustrates
different cases of FFR jumping. (A detailed description of the
algorithm is beyond the scope of this paper.)

Boolean Critical (j)
{if (l (j) ~ j) return TRUE
Prop_crit = {critical FOBs of j}
Prop__noncrit = {non-critical FOBs of j}
build FFRlist
repeat

{i = lowest level FFR in FFRlist
FFRcheck (i)
if (Prop_crit =. ~) return FALSE

}
until (Prop_noncrit = 4) and ~ropcri~ = l)
return TRUE

}
Figure 9. Procedure to Determine Criticality of a Stem

A1

A2 ~ ~ .

I , ° - -

I ° ° - - - - ~ . ~

°°o A3

,,,4.. p . \

" " 1 ~21 c2 I /
,,,4- " ' / I.-" ""

° ° * /

I / / L o . o
. . ~ t ~ "

°

Step Prop_crit Prop_noncrit

A2 AI,A3
B A1,A3
BI AI,A3,B2
BI A1,B2
C A I
C2 A1,C1
D 4~

FFRlist

B,E,D
E,D
E,D
C,D
D
D

Figure 10. Illustration for the execution of Critical(A)

Example
Suppose that the lines currently identified as critical are those shown in
Figure 10 and now the problem is to determine whether A is critical.
The table traces the execution of Critical(A).

Step 1: Starting with Prop_crit={A2} and Prop_noncrit={A1,A3}, the
first FFR checked is B, which is reached only by lines in Prop_.crit
(A2). Here no masking can occur inside the FFR, hence the fault
effect on A2 propagates on B; therefore we add B to Prop_crit.

Step 2: The FOBs of B (B1 and B2) are added to the two frontiers
based on their previously determined criticalities.

Step 3: Next we analyze FFR E, which is reached only by one line in
Prop_noncrit (A3). Since E has a critical input (F), the propagation
from A3 to E is bound to stop inside the FFR. The reason is that there
must exist a gate G where the path from A3 will converge with the
critical path from F, such that the critical input of G has a DLV.

Step 4: FFR C is reached by lines in both frontiers - BI in in Prop_.crit
and B2 in Prop_noncrit. But the propagation from B2 cannot stop the
propagation from B1, because the algorithm had already determined
this when it established that B was critical. Therefore we add C to
Prop_crit.

Step 5: The FOBs of C are added to the two frontiers.

Step 6: The criterion we used to skip FFR C cannot be used to skip
FFR D, because of the additional potentially masking line reaching it
(AI); A1 did not play any role in determining the criticality of C. Now
we apply a different criterion to avoid tracing inside the FFR. Let
p (A1), p (C1), p (C2) denote, respectively, the inversion parities between
A1, C1, and C2, and D. Let v(A1), v(C1) and v(C2) be their current
values. It can be shown that if
v (A I) ~ p (A 1) = v (C I) ~ p (C l) = v (C 2) ~ p (C 2) , then masking cannot
occur inside the FFR D. Assuming that this relation is satisfied in
Figure 10(a), we add D to Prop crit.

Step 7: At this point Prop noncrit=4~ and ~'rop__cri~--i (since
Prop_crit={D}); hence the procedure returns identifying A as critical. I"l

One may wonder why the condition Prop_noncrit=~b alone is not
suflq.cient for stopping the forward tracing. The answer is provided by
the example in Figure 11, which shows a stem (X), all of whose FOBs
are critical (hence Prop_nonerit=4~). However, contrary to one's

Paper 15.4
217

I A

1
1 B

Figure 11. A Noncritical Stem With All Its FOBs Critical

intuition, X is not critical. The reason is that the potentially masking
lines appear after propagation through C and D. Requiring
~'rop__cri~=l and Prop_noncrit-e# guarantees that no masking can
further occur.

If none of the "FFR jumping" criteria applies, then path tracing
proceeds inside a FFR. This is similar to the path tracing at the FFR
level, i.e., propagating the frontiers Prop_crit and Prop_noncrit in a
breadth-first manner. Note that no gate evaluations are involved, and
even the gate types and the signal values are unnecessary for this
analysis; the only information needed is provided by the sensitive
markings.

We emphasize that in most cases self-masking does not occur and the
propagation of the potentially masking fault effects is "short-lived";
therefore, little effort is usually needed to determine that a stem is
critical.

3.4 Further Improvements

We have identified (but not yet implemented) two additional speed-up
techniques whose objective is to reduce the area of the circuit where
critical path tracing is performed. As presented in the previous
sections, in every test the algorithm starts at the POs and extends the
criticality of the POs as far as possible towards the PIs.

The goal of the first speed-up technique is to determine start lines
different from POs for critical path tracing. This is based on the fact
that the criticality of some lines may remain the same in consecutive
tests. As an extreme example, consider the case of a cone whose PIs
have the same value in two consecutive tests; obviously the critical path
tracing in the second test would be completely redundant. On the other
hand, if the PO value changes, the critical path tracing must start from
the PO. In the general case falling between these two extremes, we can
always identify a set of start lines, such that the criticality in the test
ti+l of the lines in the area between the start lines and the PO is the
same as in the test t i (see Figure 12a). The identification of potential

start lines is done during true-value simulation by simply marking the
gates that satisfy the following conditions (see Figure 12b):

(1) the gate is evaluated as a result of some input change(s) but its
output does not change, and

(2) the gate output has been critical in the previous test.

The critical trace starts at the highest level potential start line, which is
always a true start line. The true start lines can be determined by
processing the potential start lines in their decreasing level order.

The goal of the second speed-up technique is to determine stop points
different from the PIs for critical path tracing. The basic idea is
illustrated in Figure 12(c). Suppose that the values in the first test are
as shown. Then in any further test in which D has a critical 0 value,
continuing the backtracing from D is useless, since all the faults that
could make D=I have already been detected. Thus D can be flagged as
a O-stop line, and the same reasoning applies to E as well. Moreover,
after two other tests that apply (A,B,C)ffiOIO and 100, D becomes a
1-stop line and then, after (A,B,C)--I01, E also becomes a 1-stop line.
During the evaluation of a set of tests, the stop lines generally keep
advancing towards the POs, so the area in which the critical paths are
extended becomes smaller and smaller. This is similar to fault dropping
in fault simulation.

PIs

STOP LINES

PO

START LINES

POTENTIAL START

I--- LINES -7

1 / 0
1 / 0

(a)

(b)

o (c)
CO z__.1 E

Figure 12(a). Start Lines and Stop Lines in a Cone
(b). Determining Potential Start Lines
(c). Determining Stop Lines

3.5 Summary of the Method

Our method consists of the following steps:

(1) Preprocessing the circuit model, to determine its cones and
FFR structure and the (p,l) labels.

(2) True value simulation of one test and identification of the
sensitive gate inputs.

(3) Critical Path Tracing, which is a backtracing procedure that
identifies the critical lines (and hence the detected faults) in the
test simulated in step 2.

Steps 2 and 3 are repeated for every test in the set of tests under
evaluation.

4. IMPACT OF APPROXIMATION

In Section 2.3 we pointed out that critical path tracing is an
approximate method. The approximation consists in not marking as
detected a stem fault actually detected by multiple path sensitization
(MPS) such that we have DLVs at the reconvergence gate (see
Figure 3a). In this section we shall analyze the impact of the
approximation on the test evaluation process.

First note that there are many circuits whose structure and function
preclude the occurrence of this phenomenon; the adder in Figure 4a
provides such an example. Second, in circuits where it can occur we
still need a test that will create the necessary conditions for that type of
MPS. How likely is this to happen depends on the way the evaluated
test is generated. If a test is randomly generated, then there is a
non-zero probability that it may happen. However, a test generated by
random single-path sensitization (SPS) [GoRo81] or by any
deterministic algorithm is unlikely to sensitize multiple paths. All test
generation algorithms first try to sensitize only one path and attempt
MPS only when the target fault cannot be detected by SPS.
Experimental results presented in [Cha78] confirm that cases where

Paper 15.4
218

MPS is required for fault detection occur seldom in practical circuits.
Therefore, the approximation will occur seldom, and the affected tests
(if any) are likely to be randomly generated.

The impact of the approximation should be analyzed in the context of
evaluating a set of tests, rather than a single test.

For test grading, it does not matter in which test a fault is detected, but
whether it is detected by any of the tests in the evaluated test set. Even
if a fault is detected by MPS in one test, there is a good chance that it
will be detected by SPS in other tests. Thus the only faults not
recognized as detected are those that are detected only by MPS. If this
unlikely situation occurs, then the computed fault coverage will be
slightly pessimistic.

In the context of test generation the function of critical path tracing is
to help in the selection of the next target fault. If the approximation
occurs, the test generation algorithm may be needlessly asked to
generate a test for an already detected fault, sayf. In most casesfwill
be detected by SPS, and then critical path tracing will mark f as
detected. If the test generator has obtained a test for f, but f is not
marked as detected by critical path tracing, then we directly mark the
corresponding line as critical and restart critical path tracing from that
line. Thus the approximation has practically no impact on the test
generation process.

The use of critical path tracing for constructing a fault dictionary may
result, if the approximation does occur, in some loss of diagnostic
resolution. This will happen only when a missed detected fault resides
in a different replaceable unit from its equivalent fault(s) marked as
detected. (For example, in Figure 3a the missed fault A s-a-O is
equivalent to G s-a-O, which is marked as detected.) This is quite an
unlikely case in VLSI circuits, characterized by large replaceable units.
However, this potential loss of resolution is more than compensated by
the gain in diagnostic resolution obtained because critical path tracing
does not require fault dropping. Fault dropping, done to contain the
high cost of conventional fault simulation, results in many
non-equivalent faults being represented by the same fault signature.

The applicability of the fault dictionary approach to the diagnosis of
VLSI circuits is becoming increasingly questionable; this approach is
being replaced by post-test diagnosis techniques [Hsu81, ArWaS1] that
attempt to directly identify the faults that are consistent with the entire
obtained result. The critical path tracing is an ideal tool for this type
of analysis, since

1) tracing from a "failing* PO directly identifies a set of possible
fault locations,

2) tracing from a "passing" PO identifies a set of faults that are
not present in the circuit under test.

Successive applications of these two criteria, coupled with a judicious
selection of the POs and tests in which critical path tracing is
performed, leads to an efficient post-test diagnosis method. Although
some loss of resolution may occur due to the approximation, such a
technique would be more efficient than the post-test diagnostic methods
based on topological path backtracing and conventional fault simulation
[Hsu81, ArWaS1].

5. COMPARISON WITH FAULT SIMULATION

GOCl has shown that the deductive method is faster than parallel fault
simulation [Goel80a]. Experimental results presented in [Ozgu79]
indicate that the deductive and single fault propagation methods are
comparable in speed. Hong estimates that his method is faster than
deductive simulation [Hong78]. We shall compare critical path tracing
with Hong's method and with concurrent fault simulation. The
advantages of our method compared to the explicit simulation of all the
stem faults, as done by Hong, are:

(1) We analyze only a subset of the stem faults, namely only those
stems reached by backtracing; some of them can be
immediately identified as critical due to their (p,l) labels
(determined by preprocessing).

(2) For every stem checked for criticality, the paths involved in our
forward propagation are usually a small subset of the paths
involved in the explicit simulation of a stem fault.

(3) Along the paths traced forward, our method often jumps
directly from a FFR input to its output.

(4) Even inside a FFR our method does only path tracing and does
not involve gate evaluations.

Preliminary results of our initial implementation of critical path tracing
(without the speed-up techniques mentioned in Section 3.4) showed a
20 to 40 percent speed-up compared to concurrent fault simulation with
fault dropping after first detection. Without fault dropping in
concurrent simulation, critical path tracing was 6 to 8 times faster.

6. CONCLUSIONS

The key factors contributing to the increased efficiency of critical path
tracing compared to fault simulation are as follows:

• it deals directly only with the detected faults rather than all possible
faults,

• it deals with faults only implicitly rather than explicitly,

• it is an approximate rather than an exact technique.

The approximation introduced is pessimistic and consists in not marking
as detected some faults detected by multiple path sensitization with
DLVs at a reconvergence gate. This phenomenon occurs seldom.
However, we have shown that the approximation does not affect the test
generation process and has practically no impact on the other
applications of critical path tracing.

The advantages of test evaluation by critical path tracing over
conventional methods strongly suggest that solutions to the VLSI
testing problems should be based on approximate algorithms that are
fast and generally accurate. A gain of one order of magnitude in
execution time is much more important than an "exact" algorithm
whose only advantage is that it is capable of correctly processing
situations that occur seldom. Furthermore, one can question the
wisdom of using exact and costly algorithms for an approximate fault
model.

Acknowledgement: We gratefully acknowledge the contributions of
J. J. Kulikowski in the development of the data structures for critical
path tracing.

[ArWa81]

[BrFr76]

[Cha 78]

[EiWi771

[Goel80a]

REFERENCES

Y. Arzoumanian and J. Waicukauski, "Fault Diagnosis in
an LSSD Environment," Proc. 1981 International Test
Conference, pp. 86-88, October, 1981.

M. A. Breuer and A.D. Friedman, "Diagnosis and
Reliable Design o f Digital Systems," Computer Science
Press, 1976.

C. W. Cha, W.E. Donath and F. Ozguner,
"9-V Algorithm for Test Pattern Generation of
Combinational Digital Circuits," IEEE Trans. Comput.,
Vol. C-27, No. 3, pp. 193-200, March, 1978.

E. B. Eichelberger and T. W. Williams, "A Logic Design
Structure for LSI Testability," Proc. 14th Design
Automation Conference, pp. 462-468, June, 1977.

P. Goel, "Test Generation Costs Analysis and Projections,"
Proc. 17th Design Automation Conference, pp. 77-84,
June, 1980.

Paper 15.4
219

[Goel80b]

[GoRo81]

[Hong78]

[Hsu81]

[Ozgu79]

[Roth67]

[Wang75]

[Yama78]

P. Goel, et al, "LSSD Fault Simulation Using Conjunctive
Combinational and Sequential Methods," Proc. 1980 Test
Conference, pp. 371-376, November, 1980.

P. Goel and B.C. Rosales, "PODEM-X: An Automatic
Test Generation System for VLSI Logic Structures," Proc.
18th Design Automation Conference, pp. 260-268, June,
1981.

S. J. Hong, "Fault Simulation Strategy for Combinational
Logic Networks," Proc. 8th International Syrup. on
Fault-Tolerant Computing, pp. 96-99, June, 1978.

F. Hsu, P. Solecky, and R. Beaudoin, "Structured Trace
Diagnosis for LSSD Board Testing- An Alternative to
Full Fault Simulated Diagnosis," Proc. 18th Design
Automation Conference, pp. 891-897, June, 1981.

F. Ozguner, W.E. Donath and C.W. Cha, "On Fault
Simulation Techniques," J. o f Design Automation and
Fault Tolerant Computing, Vol. 3, No. 2, pp. 83-92, April,
1979.

J. P. Roth, W.G. Bouricius and P.R. Schneider,
"Programmed Algorithms to Compute Tests to Detect and
Distinguish Between Failures in Logic Circuits," IEEE
Trans. Comput, Vol. EC-16, No. 10, pp. 567-579, October,
1967.

D. T. Wang, "An Algorithm for the Generation of Test
Sets for Combinational Logic Networks," IEEE Trans.
Comput., Vol. C-24, No. 7, pp. 742-746, July, 1975.

A. Yamada, et al, "Automatic System Level Test
Generation and Fault Location for Large Digital Systems,"
Proc. 15th Design Automation Conference, pp. 347-352,
June, 1978.

Paper 15.4
220

