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ABSTRACT 

We present an alternative to fault simulation, referred to as critical path 
tracing, that determines the faults detected by a set of tests using a 
backtracing algorithm starting at the primary outputs of a circuit. 
Critical path tracing is an approximate method, but the approximations 
introduced occur seldom and do not affect its usefulness. This method is 
more efficient than conventional fault simulation. 

1. INTRODUCTION 

Fault simulation is performed for the following applications: 

• grade a test by determining its fault coverage 

• construct a fault dictionary 

• in the context of test generation, determine a yet undetected fault as 
the next target for test generation 

• post-test diagnosis [ArWa81 ]. 

There are three general methods for fault simulation, namely parallel, 
deductive, and concurrent [BrFr76]. In addition, two other methods 
deal only with combinational circuits, namely single fault propagation 
[Roth67, Ozgu79] and Hong's method [Hong78]. A combination o f  
these two techniques is used in the PODEM-X test generation system 
[Goel80b, GoRoS1]. Specialized methods for combinational circuits are 
justified by the widespread use of design for testability techniques, such 
as LSSD [EiWi77], that transform a sequential circuit into a 
combinational one for testing purposes. Even for combinational 
circuits, the time spent in fault simulation alone is proportional to n 2, 
where n is the number of gates in the circuit [Gocl80a]. The increase 
in the gate count in VLSI circuits requires more efficient methods for 
test evaluation and test generation. 

In this paper we present an alternative to fault simulation, referred to 
as critical path tracing. It consists of simulating the fault-free circuit 
(true-value simulation) and using the computed signal values for 
tracing paths from primary outputs (POs) towards primary inputs (PIs) 
to determine the detected faults. Compared with conventional fault 
simulation, the distinctive features of critical path tracing are: 

• it directly identifies the fau l t s  detected by a test, without simulating 
the set of all possible faults. Hence all the work involved in 
propagating the faults that are not detected by a test towards the 
POs is avoided. 

• it deals with fau l t s  only implicitly. Therefore we no longer need 
fault enumeration, fault collapsing, fault partitioning (for multipass 
simulation), fault insertion and fault dropping. 

• it is based on a path tracing algorithm that does not require 
computing values in the faulty circuits by gate evaluations or fault 
list processing 

• it is an approximate method. 

Consequently, critical path tracing is faster and requires less memory 
than conventional fault simulation. The approximation occurs seldom 
and consists in not marking as detected some faults that are actually 

detected by the evaluated test. We shall show later that this 
approximation does not affect the usefulness of the method. 

Critical path tracing can be extended to synchronous sequential circuits 
using an iterative array model [BrFr76]. In this paper we will restrict 
ourselves to combinational circuits. 

2. MAIN CONCEPTS 

2.1 Criticality and Sensitivity 

We will use the concept of a critical value as defined in [Wang75]. 

Definition 1: A line l has a critical value v in the test (vector) t i f f  t 
detects the fault I s-a-~. A line with a critical value in t is said to be 
critical in t. 

Note that unlike the D notation of the D-Algorithm [Roth67], a critical 
value always indicates the detection of a fault. 

Clearly, the POs are critical in any test. Our test evaluation method 
consists of determining paths of critical lines, called critical paths,  by a 
backtracing process starting at the POs. Finding the critical lines in a 
test t, we immediately know the faults detected by t. 

Definition 2: A gate input i is sensitive if complementing the value of i 
changes the value of the gate output. 

Critical path tracing starts after the true-value simulation of the circuit 
for a test t has be.on performed. To aid the backtracing, we mark the 
sensitive gate inputs during the true-value simulation. The sensitive 
inputs of a unate gate with two or more inputs are easily determined as 
follows: 

1) if only one input i has a Dominant Logic Value (DLV), then i 
is sensitive. (AND and N A N D  have DLV 0; OR and NOR 
have DLV 1) 

2) if all inputs have value DLV,  then all inputs are sensitive, 

3) otherwise no input is sensitive. 

The marking of the sensitive gate inputs during true-value simulation 
involves little overhead, since scanning the gate inputs for DLVs is 
inherent in commonly used methods for gate evaluation. 

2.2 Fanout-Free Circuits 

First we illustrate critical path tracing in a fanout-free circuit, using the 
example in Figure 1. Figure la shows the results of true-value 
simulation with the sensitive inputs marked by dots. Figure l b shows 
the critical paths by heavy lines. For a fanout-free circuit (which 
always has a tree structure), critical path tracing is a simple tree 
traversal procedure that marks as critical and recursively follows in turn 
every sensitive input of a gate with critical output. This is based on the 
obvious fact that if a gate output is critical, then its sensitive inputs, if 
any, are also critical. For the example in Figure 1, note how critical 
path tracing completely ignores the part of the circuit bordered by the 
lines B and C, since working backwards from the PO it first determines 
that B and C are not critical. 
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Figure 2. Example of Self-Masking 
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Figure 1. Critical Path Tracing 
in a Fanout-Frec Circuit 
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2.3 Effects of Reconvergent Fanout 

Now we shall discuss the general case of a circuit with reconvergent 
fanout. Under the stuck fault model, for a signal with fanout we 
distinguish between its stem and its fanout branches (FOBs). For 
example, in Figure 2 the lines BI and B2 are FOBs of the stem B. The 
difficulty in extending critical path tracing to circuits with reconvergent 
fanout is determining when a stem is critical, given that  at least one of 
its FOBs is critical. In Figure 2 we cannot extend the critical path 
from BI to B because the effects of the fault B s-a-O propagate on two 
paths with different inversion parities such that they cancel each other 
when reconverging at the gate D. This phenomenon is referred to as 
self-masking. 

Following Hong's approach [Hong78], we separate the test evaluation 
problem into two subproblems: one deals with fanout-free regions 
(FFRs) of the circuit, and the other with stems. The strategy adopted 
in [Hong78] is to first determine the detectability of the stem faults by 
explicit fault simulation, then trace critical paths in every FFR whose 
stem fault has been detected. This mixed strategy represents an 
improvement compared with the explicit simulation of all faults. Our 
strategy is to determine detectability of the stem faults as they are 
reached during backtracing by a novel type of analysis that,  as we will 
show later, is much more efficient than their explicit fault simulation. 
This analysis is described in the next section. 

G 

Figure 3. 

(b) 

impact  of Multiple Path Sensitization 
on Critical Path Tracing 

Another effect of reconvergent fanout is that  faults that are detected 
only by multiple-path sensitization may be declared to be undetected, as 
illustrated in Figure 3a. Here none of the inputs of the gate G is 
critical, but  the fault on A is detected by double path sensitization. As 
critical path tracing involves establishing unbroken chains of  critical 
lines, it will not recognize the stem A as critical in that  test; therefore it 
is only an approximate method. We shall discuss the implications of 
this approximation in Section 4. 

Note that  the case when multiple paths are sensitized from a stem such 
that  we have DLV values at a reconvergence gate [see Figure 3(b)] 
does not pose any problem for our method. 

3. ~ R I T H M  FOR CRITICAL PATH TRACING 

3.1 Preprocessing 

First we preprocess the circuit to determine its cones, where a cone is 
the subcircuit feeding one PO. We represent a cone as an 
interconnection of FFRs. Figure 4(b) shows these structures for the 
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Figure 4(a). Example Circuit 
(b). Partition Into Cones and FFRs 

adder in Figure 4(a). The inputs of a FFR are FOBs and/or PIs. The 
output of a FFR is either a PO or a stem. Note that whether a line i is 
a stem may depend on the cone containing it. For example, N and CI 
are stems in the cone of S, but not in the cone of CO. Constructing 
cones and FFRs is commonly done as a preprocessing step in test 
generation for LSSD circuits [Yama78, Goe180bl. 

3.2 The Basic Structure 

Figure 5 outlines the algorithm for evaluating a given test. It assumes 
that true-value simulation, including the marking of the sensitive gate 
inputs, has been performed. The algorithm processes every cone 
starting at its PO a n d  alternates between two main operations: critical 
path tracing inside a FFR, represented by the procedure Extend, and 
checking a stem for criticality, done by the procedure Critical. Once a 
stern j is found to be critical, critical path tracing continues from j .  

Figure 6 shows the recursive procedure Extend(i)  that backtraces all 
the critical paths inside a FFR starting from a given critical line i by 
following lines marked as sensitive. Ex tend  stops at FFR inputs and 
collects all the stems reached in the set Stems to check. 

Every stem in Stems to check has at least one critical FOB. The 
algorithm always selects the highest level stem for analysis (i.e., the 
closest to the PO), and hence guarantees that the status (critical/non- 
critical) of all its FOBs is known. The key element in the algorithm is 
the routine Critical (j) that determines whether the stem j is critical. 

3.3 Determining the Criticality of a Stem 

To determine the criticality of a stem, we will find out whether 
self-masking occurs. 

f o r  e v e r y  c o n e  

{Stems to c h e c k -  @ 
Extend (PO ) 
while (Stems_to_check ;a @) 

{j = highest level stem in Stems  to check 
if (Critical(j)) Extend (j) 

} 
} 

Figure 5. Algorithm for Evaluating One Test 

Extend (i) 
{mark i as critical 
if i is a FOB 

add stem(i) to Stems  to check 
else 

for every input j of i 
if (sensitive (/)) Ex tend  (j) 

} 

Figure 6. Backtracing inside a FFR 
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Figure 7. (p,l) Labeling 

A Simple Case 
First we will show a simple preprocessing technique that allows us to 
directly identify some stems as critical without any analysis. When a 
cone is built by topological backtracing starting from its PO, with every 
FFR input and output i we associate a label (v,/) defined as follows. 

Definition 3: A line i has a label (p,/) if all paths from i to the PO of 
the cone pass through 1, and every path from i to I has parity p. 

Figure 7(a) shows the (p,/) labels in the cone of S. Clearly all inputs 
of a FFR get the same I. If all the FOBs of a stem j have the same 
(p,/) label, then this is assigned to the stem; otherwise j is assigned the 
label (0j) .  The following lemma allows us to mark stems as critical 
without additional analysis. 

L e m m a  1: If the label of a stem j is (p,l), where l ~ j ,  then whenever j 
is reached by backtracing it can always be marked as critical. 

Proof: Line j can be reached during backtracing only if l has already 
been proved to be critical. Since all the paths from j to l have the same 
parity, self-masking cannot occur between j and I. Hence the fault on j 
propagates to 1, and becat~se 1 is critical, it also propagates to the PO. 
Therefore j is also critical, r 'l 

Figure7(a)  shows the (D,/) labels for the S cone of Figure4: 
According to Lemma 1, Critical will immediately return TRUE for the 
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Figure 8. Complete Critical Path Tracing in a Cone 

stems L and T. Note that the labeling is done per cone, as L has to be 
checked for criticality in the cone of CO. In our example, both L and T 
have all their FOBs feeding the same FFR; Figure 7(b) shows a 
different situation in which a stem (P) need not be checked. 
General Case 
To illustrate the principle used by Critical (j) to check a stem j that 
does not satisfy Lemma 1, consider the cone of S for the test 
(X,Y, CI) = 100 (see Figure8).  After performing Extend(S), we 
determine that T2 and N2 are critical. At this point 
Stems_to_check = {T,N}. Critical(T) returns TRUE immediately and 
Extend(T) flags CI2 as critical. Now Stems to check = {N, C1} and N 
is selected for analysis. For the purpose of explanation only, suppose 
we insert a s-a-O fault on N. The effects of this fault start propagating 
along two paths, one starting at the critical FOB (N2), and the other at 
the non-critical one (N1). Self-masking may occur only if the 
propagation along the latter path, referred to as potentially masking, 
"kills" the propagation along the critical path as illustrated in Figure 2. 
It is easy to determine that this type of reconvergence does not occur in 
Figure 8, since the potentially masking path is immediately stopped at 
the gate T, as it enters the gate via an input not marked as sensitive. 
Hence we can immediately conclude that N is critical. We emphasize 
that propagation along the critical path beyond N2 is not needed 
because we have determined that all the potentially masking fault 
effects have disappeared. This is similar to the concepts used in single 
fault propagation. 
The Algorithm 
Figure 9 outlines the procedure Critical(j). First it examines the (p,l) 
label of the stem j to determine whether it satisfies Lemma 1. If not, 
the check for the criticality of j implicitly keeps track of the 
propagation of the fault effects of j along critical paths versus 
propagation on potentially masking paths. The two propagation 
frontiers are maintained in the sets Prop_crit and Prop_noncrit. These 
sets consist only of FOBs and stems. FFRlist is the set of FFRs 
directly fed by the FOBs in Propcrit and Prop_noncrit. The algorithm 
always selects the lowest level FFR from FFRlist for checking, and 
hence it guarantees that the status of all the FFR inputs with respect to 
the propagation of the fault on j is known. The procedure FFRcheck (i) 
determines the propagation of the two frontiers through FFR i; hence it 
implicitly determines whether the fault effects arriving on FFR inputs 
reach its output. The salient feature of FFRcheck (i) is that it usually 
"jumps" from the inputs of FFR i directly to its output without tracing 
through any gate inside the FFR. The following example illustrates 
different cases of FFR jumping. (A detailed description of the 
algorithm is beyond the scope of this paper.) 

Boolean Critical (j) 
{if (l (j) ~ j)  return TRUE 
Prop_crit = {critical FOBs of j} 
Prop__noncrit = {non-critical FOBs of j} 
build FFRlist 
repeat 

{i = lowest level FFR in FFRlist 
FFRcheck (i) 
if (Prop_crit =. ~) return FALSE 

} 
until (Prop_noncrit = 4) and ~ropcri~ = l) 
return TRUE 

} 
Figure 9. Procedure to Determine Criticality of a Stem 
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Step Prop_crit Prop_noncrit 

A2 AI,A3 
B A1,A3 
BI AI,A3,B2 
BI A1,B2 
C A I  
C2 A1,C1 
D 4~ 

FFRlist 

B,E,D 
E,D 
E,D 
C,D 
D 
D 

Figure 10. Illustration for the execution of Critical(A) 

Example 
Suppose that the lines currently identified as critical are those shown in 
Figure 10 and now the problem is to determine whether A is critical. 
The table traces the execution of Critical(A). 

Step 1: Starting with Prop_crit={A2} and Prop_noncrit={A1,A3}, the 
first FFR checked is B, which is reached only by lines in Prop_.crit 
(A2). Here no masking can occur inside the FFR, hence the fault 
effect on A2 propagates on B; therefore we add B to Prop_crit. 

Step 2: The FOBs of B (B1 and B2) are added to the two frontiers 
based on their previously determined criticalities. 

Step 3: Next we analyze FFR E, which is reached only by one line in 
Prop_noncrit (A3). Since E has a critical input (F), the propagation 
from A3 to E is bound to stop inside the FFR. The reason is that there 
must exist a gate G where the path from A3 will converge with the 
critical path from F, such that the critical input of G has a DLV. 

Step 4: FFR C is reached by lines in both frontiers - BI in in Prop_.crit 
and B2 in Prop_noncrit. But the propagation from B2 cannot stop the 
propagation from B1, because the algorithm had already determined 
this when it established that B was critical. Therefore we add C to 
Prop_crit. 

Step 5: The FOBs of C are added to the two frontiers. 

Step 6: The criterion we used to skip FFR C cannot be used to skip 
FFR D, because of the additional potentially masking line reaching it 
(AI); A1 did not play any role in determining the criticality of C. Now 
we apply a different criterion to avoid tracing inside the FFR. Let 
p (A1), p (C1), p (C2) denote, respectively, the inversion parities between 
A1, C1, and C2, and D. Let v(A1), v(C1) and v(C2) be their current 
values. It can be shown that if 
v ( A I ) ~ p ( A 1 ) = v ( C I ) ~ p ( C l ) = v ( C 2 ) ~ p ( C 2 ) ,  then masking cannot 
occur inside the FFR D. Assuming that this relation is satisfied in 
Figure 10(a), we add D to Prop crit. 

Step 7: At this point Prop noncrit=4~ and ~'rop__cri~--i (since 
Prop_crit={D}); hence the procedure returns identifying A as critical. I"l 

One may wonder why the condition Prop_noncrit=~b alone is not 
suflq.cient for stopping the forward tracing. The answer is provided by 
the example in Figure 11, which shows a stem (X), all of whose FOBs 
are critical (hence Prop_nonerit=4~). However, contrary to one's 
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Figure 11. A Noncritical Stem With All Its FOBs Critical 

intuition, X is not critical. The reason is that the potentially masking 
lines appear after propagation through C and D. Requiring 
~'rop__cri~=l and Prop_noncrit-e# guarantees that no masking can 
further occur. 

If none of the "FFR jumping" criteria applies, then path tracing 
proceeds inside a FFR. This is similar to the path tracing at the FFR 
level, i.e., propagating the frontiers Prop_crit and Prop_noncrit in a 
breadth-first manner. Note that no gate evaluations are involved, and 
even the gate types and the signal values are unnecessary for this 
analysis; the only information needed is provided by the sensitive 
markings. 

We emphasize that in most cases self-masking does not occur and the 
propagation of the potentially masking fault effects is "short-lived"; 
therefore, little effort is usually needed to determine that a stem is 
critical. 

3.4 Further Improvements 

We have identified (but not yet implemented) two additional speed-up 
techniques whose objective is to reduce the area of the circuit where 
critical path tracing is performed. As presented in the previous 
sections, in every test the algorithm starts at the POs and extends the 
criticality of the POs as far as possible towards the PIs. 

The goal of the first speed-up technique is to determine start lines 
different from POs for critical path tracing. This is based on the fact 
that the criticality of some lines may remain the same in consecutive 
tests. As an extreme example, consider the case of a cone whose PIs 
have the same value in two consecutive tests; obviously the critical path 
tracing in the second test would be completely redundant. On the other 
hand, if the PO value changes, the critical path tracing must start from 
the PO. In the general case falling between these two extremes, we can 
always identify a set of start lines, such that the criticality in the test 
ti+l of the lines in the area between the start lines and the PO is the 
same as in the test t i (see Figure 12a). The identification of potential 

start lines is done during true-value simulation by simply marking the 
gates that satisfy the following conditions (see Figure 12b): 

(1) the gate is evaluated as a result of some input change(s) but its 
output does not change, and 

(2) the gate output has been critical in the previous test. 

The critical trace starts at the highest level potential start line, which is 
always a true start line. The true start lines can be determined by 
processing the potential start lines in their decreasing level order. 

The goal of the second speed-up technique is to determine stop points 
different from the PIs for critical path tracing. The basic idea is 
illustrated in Figure 12(c). Suppose that the values in the first test are 
as shown. Then in any further test in which D has a critical 0 value, 
continuing the backtracing from D is useless, since all the faults that 
could make D=I  have already been detected. Thus D can be flagged as 
a O-stop line, and the same reasoning applies to E as well. Moreover, 
after two other tests that apply (A,B,C)ffiOIO and 100, D becomes a 
1-stop line and then, after (A,B,C)--I01, E also becomes a 1-stop line. 
During the evaluation of a set of tests, the stop lines generally keep 
advancing towards the POs, so the area in which the critical paths are 
extended becomes smaller and smaller. This is similar to fault dropping 
in fault simulation. 

PIs 

STOP LINES 

PO 

START LINES 

POTENTIAL START 

I--- LINES -7 

1 / 0  
1 / 0  

(a) 

(b) 

o . . . .  (c) 
CO z__.1 E 

Figure 12(a). Start Lines and Stop Lines in a Cone 
(b). Determining Potential Start Lines 
(c). Determining Stop Lines 

3.5 Summary of the Method 

Our method consists of the following steps: 

(1) Preprocessing the circuit model, to determine its cones and 
FFR structure and the (p,l) labels. 

(2) True value simulation of one test and identification of the 
sensitive gate inputs. 

(3) Critical Path Tracing, which is a backtracing procedure that 
identifies the critical lines (and hence the detected faults) in the 
test simulated in step 2. 

Steps 2 and 3 are repeated for every test in the set of tests under 
evaluation. 

4. IMPACT OF APPROXIMATION 

In Section 2.3 we pointed out that critical path tracing is an 
approximate method. The approximation consists in not marking as 
detected a stem fault actually detected by multiple path sensitization 
(MPS) such that we have DLVs at the reconvergence gate (see 
Figure 3a). In this section we shall analyze the impact of the 
approximation on the test evaluation process. 

First note that there are many circuits whose structure and function 
preclude the occurrence of this phenomenon; the adder in Figure 4a 
provides such an example. Second, in circuits where it can occur we 
still need a test that will create the necessary conditions for that type of 
MPS. How likely is this to happen depends on the way the evaluated 
test is generated. If a test is randomly generated, then there is a 
non-zero probability that it may happen. However, a test generated by 
random single-path sensitization (SPS) [GoRo81 ] or by any 
deterministic algorithm is unlikely to sensitize multiple paths. All test 
generation algorithms first try to sensitize only one path and attempt 
MPS only when the target fault cannot be detected by SPS. 
Experimental results presented in [Cha78] confirm that cases where 
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MPS is required for fault detection occur seldom in practical circuits. 
Therefore, the approximation will occur seldom, and the affected tests 
(if any) are likely to be randomly generated. 

The impact of the approximation should be analyzed in the context of 
evaluating a set of tests, rather than a single test. 

For test grading, it does not matter in which test a fault is detected, but 
whether it is detected by any of the tests in the evaluated test set. Even 
if a fault is detected by MPS in one test, there is a good chance that it 
will be detected by SPS in other tests. Thus the only faults not 
recognized as detected are those that are detected only by MPS. If this 
unlikely situation occurs, then the computed fault coverage will be 
slightly pessimistic. 

In the context of test generation the function of critical path tracing is 
to help in the selection of the next target fault. If the approximation 
occurs, the test generation algorithm may be needlessly asked to 
generate a test for an already detected fault, sayf. In most casesfwill  
be detected by SPS, and then critical path tracing will mark f as 
detected. If the test generator has obtained a test for f,  but f is not 
marked as detected by critical path tracing, then we directly mark the 
corresponding line as critical and restart critical path tracing from that 
line. Thus the approximation has practically no impact on the test 
generation process. 

The use of critical path tracing for constructing a fault  dictionary may 
result, if the approximation does occur, in some loss of diagnostic 
resolution. This will happen only when a missed detected fault resides 
in a different replaceable unit from its equivalent fault(s) marked as 
detected. (For example, in Figure 3a the missed fault A s-a-O is 
equivalent to G s-a-O, which is marked as detected.) This is quite an 
unlikely case in VLSI circuits, characterized by large replaceable units. 
However, this potential loss of resolution is more than compensated by 
the gain in diagnostic resolution obtained because critical path tracing 
does not require fault dropping. Fault dropping, done to contain the 
high cost of conventional fault simulation, results in many 
non-equivalent faults being represented by the same fault signature. 

The applicability of the fault dictionary approach to the diagnosis of 
VLSI circuits is becoming increasingly questionable; this approach is 
being replaced by post-test diagnosis techniques [Hsu81, ArWaS1] that 
attempt to directly identify the faults that are consistent with the entire 
obtained result. The critical path tracing is an ideal tool for this type 
of analysis, since 

1) tracing from a "failing* PO directly identifies a set of possible 
fault locations, 

2) tracing from a "passing" PO identifies a set of faults that are 
not present in the circuit under test. 

Successive applications of these two criteria, coupled with a judicious 
selection of the POs and tests in which critical path tracing is 
performed, leads to an efficient post-test diagnosis method. Although 
some loss of resolution may occur due to the approximation, such a 
technique would be more efficient than the post-test diagnostic methods 
based on topological path backtracing and conventional fault simulation 
[Hsu81, ArWaS1 ]. 

5. COMPARISON WITH FAULT SIMULATION 

GOCl has shown that the deductive method is faster than parallel fault 
simulation [Goel80a]. Experimental results presented in [Ozgu79] 
indicate that the deductive and single fault propagation methods are 
comparable in speed. Hong estimates that his method is faster than 
deductive simulation [Hong78]. We shall compare critical path tracing 
with Hong's method and with concurrent fault simulation. The 
advantages of our method compared to the explicit simulation of all the 
stem faults, as done by Hong, are: 

(1) We analyze only a subset of the stem faults, namely only those 
stems reached by backtracing; some of them can be 
immediately identified as critical due to their (p,l) labels 
(determined by preprocessing). 

(2) For every stem checked for criticality, the paths involved in our 
forward propagation are usually a small subset of the paths 
involved in the explicit simulation of a stem fault. 

(3) Along the paths traced forward, our method often jumps 
directly from a FFR input to its output. 

(4) Even inside a FFR our method does only path tracing and does 
not involve gate evaluations. 

Preliminary results of our initial implementation of critical path tracing 
(without the speed-up techniques mentioned in Section 3.4) showed a 
20 to 40 percent speed-up compared to concurrent fault simulation with 
fault dropping after first detection. Without fault dropping in 
concurrent simulation, critical path tracing was 6 to 8 times faster. 

6. CONCLUSIONS 

The key factors contributing to the increased efficiency of critical path 
tracing compared to fault simulation are as follows: 

• it deals directly only with the detected faults rather than all possible 
faults, 

• it deals with faults only implicitly rather than explicitly, 

• it is an approximate rather than an exact technique. 

The approximation introduced is pessimistic and consists in not marking 
as detected some faults detected by multiple path sensitization with 
DLVs at a reconvergence gate. This phenomenon occurs seldom. 
However, we have shown that the approximation does not affect the test 
generation process and has practically no impact on the other 
applications of critical path tracing. 

The advantages of test evaluation by critical path tracing over 
conventional methods strongly suggest that solutions to the VLSI 
testing problems should be based on approximate algorithms that are 
fast and generally accurate. A gain of one order of magnitude in 
execution time is much more important than an "exact" algorithm 
whose only advantage is that it is capable of correctly processing 
situations that occur seldom. Furthermore, one can question the 
wisdom of using exact and costly algorithms for an approximate fault 
model. 
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