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Abstract

In this paper we introduce a runtime, non-trace based algorithm
to compute the critical path profile of the execution of a message
passing parallel program. Our algorithm permits starting or
stopping the critical path computation during program execution
and reporting intermediate values.  We also present an online
algorithm to compute a variant of critical path, called critical
path zeroing,  that measures the reduction in application execu-
tion time that improving a selected procedure will have.  Finally,
we present a brief case study to quantify the runtime overhead of
our algorithm and to show that online critical path profiling can
be used to find program bottlenecks.

1. Introduction
In performance tuning parallel programs, simple sums

of sequential metrics, such as CPU utilization, do not pro-
vide the complete picture. Due to the interactions between
threads of execution, improving the performance of a single
procedure may not reduce the overall execution time of the
program. One metric, explicitly developed for parallel pro-
grams, that has proved useful is Critical Path Profiling[16].
Based on our experience with commercial and scientific
users, Critical Path Profiling is an effective metric for tun-
ing parallel programs. It is especially useful during the early
stages of tuning a parallel program when load imbalance is
a significant bottleneck[7]. In this paper we introduce a
runtime, non-trace based algorithm to compute the critical
path profile. Our algorithm also permits starting or stopping
the critical path computation during program execution and
reporting intermediate values.

Previous algorithms to compute the critical path profile
are expensive. In an earlier paper[12], we described an off-
line (post-mortem) approach to computing the critical path
profile that required recording all inter-process, procedure
entry, and procedure exit events during execution. Once the
program had finished, a graph containing all recorded
events is constructed. The space required to compute Criti-
cal Path Profiling in this off-line manner is O(e) where e is

the number of events. The time required is also O(e). Un-
fortunately for large, long running programs, it is not al-
ways feasible to log the events necessary to compute the
critical path profile nor to explicitly build this graph.

To make critical path profiling practical for long run-
ning programs, we developed an online (during program
execution) algorithm that incrementally computes the criti-
cal path profile for a selected procedure(s). It requires O(p)
space where p is the number of processes in the program.
The time required is O(e’) where e’ is a subset of e con-
sisting of inter-process events and call and return events for
the selected procedure(s). Our online approach makes it
possible to integrate critical path profiling into online per-
formance monitoring systems such as Paradyn[11]. By us-
ing Paradyn’s dynamic instrumentation system, we only
need to insert instrumentation code for the procedures
whose share of the critical path we are currently computing.

We also present an online algorithm to compute a vari-
ant of critical path, called critical path zeroing. Critical path
zeroing measures the reduction in application execution
time that improving a selected procedure will have. Finally,
we present results from running an initial implementation of
our algorithm using several PVM[6], based parallel pro-
grams. Initial results indicate that our online critical path
algorithm can profile up to eight procedures with a 3-10%
slow down of the application program.

2. Critical Path
The advantage of critical path profiling compared to

metrics that simply add values for individual processes is
that it provides a “global view” of the performance of a
parallel computation that captures the performance impli-
cations of the interactions between processes. However, this
advantage of providing a global view is exactly what makes
it difficult to efficiently compute the metric. In a distributed
system, extracting a global view during the computation
requires exchanging information between processes. This
exchange of information will require resources (e.g., proc-
essor cycles and communication bandwidth) and could po-
tentially slow down the computation being measured. In this
section, we review how to compute critical path profiling in
an off-line environment and then introduce a new, efficient
online algorithm.

2.1  Off-line Algorithm and its Limitations
Before we describe the off-line algorithm, we define a

few relevant terms:
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Process: A thread of execution with its own address space.

Event: Observable operations performed by a process. A
process communicates with other processes via mes-
sages. Message passing consists of start-send, end-
send, start-receive, and end-receive operations each of
which is an event. Message events can be “matched”
between processes. For example, an end-send event in
one process matches exactly one end-receive event in
another process. Processes also have local events for
procedure calls and returns.1

Program: One or more processes that communicate during
execution. This definition of a program captures
SPMD, MIMD, and client-sever systems.

Program Execution: A single execution of a program on
one or more processors with one input. A program exe-
cution consists of one ore more processes. A program
execution is defined by the total ordering of all events
in all its processes. We denote a program execution P.

Program (Execution) Trace: A set of logs, one per proc-
ess, that records the events that happened during the
execution of that process. For a program execution P,
let PT[p,i] denote the ith event in process p.

CPU Time: A per-process clock that runs when the process
is executing on a processor and is not waiting for a
message. Each event is labeled with the current CPU
time at the time of the event.

                                                          
1 This definition could easily be extended to include other syn-
chronization or communication events such as locks and barriers.

Program Activity Graph (PAG): A graph of the events in
a single program trace. Nodes in the graph represent
events in the program’s execution. Arcs represent the
ordering of events within a process or the communica-
tion dependencies between processes. Each arc is la-
beled with the amount of CPU time between events.
Figure 1 shows a simple PAG for a parallel program
with three processes.

The critical path of a parallel program is the longest
CPU time weighted path through the PAG. We can record
the time spent on the critical path and attribute it to the pro-
cedures that were executing. The Critical Path Profile is a
list of procedures and the time each procedure contributed
to the length of the critical path. The time spent in these
procedures is the reason that the program ran as long as it
did. Unless one of these procedures is improved, the appli-
cation will not run any faster.

Since the PAG is a directed acyclic graph and none of
the arcs are negative, a variation on the distributed shortest
path algorithm described by Chandy and Misra in [4] can
be used for this calculation. This algorithm passes messages
along the arcs of the graph. Each message contains the
value of the longest path to the current node. At split nodes
(nodes with one inbound arc and two outbound arcs), the
message is duplicated and sent on each of the outbound
arcs. At merge nodes, those with two inbound arcs and one
outbound arc, only the longest path is propagated. The first
phase of the algorithm terminates when the last node in the
graph has received messages on each of its inbound arcs.
Once the path is found, a second (backwards) pass is made
though the graph. This pass traverses the critical path and
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accumulates the time spent by each procedure on the path.
The pseudo code for the algorithm is shown in Figure 2.

Since the number of nodes in the PAG is equal to the
number of events during the program’s execution, explicitly
building the graph is not practical for long running pro-
grams. One way to overcome this limitation is to develop an
algorithm that does not require storing events logs or
building the graph. However, we want to compute the criti-
cal path profile for distributed memory computations, and
therefore any online approach will require instrumentation
messages to co-exist with (and compete for resources with)
application messages. Therefore, we need to keep the vol-
ume and frequency of instrumentation messages small.
Since programs can have hundreds or thousands of proce-
dures, an approach that requires sending messages whose
lengths are proportional to the number of procedures can
cause a significant interference with the application pro-
gram due to message passing.

2.2 Online Computation of Critical Path
With these challenges in mind, we have developed an

online algorithm to compute the Critical Path Profile. We

describe our approach to computing the Critical Path Pro-
file in three steps. First, we show an algorithm to compute
the share (fraction) of the critical path for a specified pro-
cedure. Second, we describe how to calculate the fraction of
the critical path for a single procedure for a specific subin-
terval of the program’s execution starting at the beginning
of the computation. Third, we discuss how to start collect-
ing critical path data during program execution.

Rather than computing the Critical Path Profile for all
procedures in the application, we compute the Critical Path
Profile for a selected set of procedures. Currently selecting
the desired set of procedures to compute the Critical Path
Profile for is left to the programmer. A good heuristic is to
identify those procedures that consume a large percentage
of the total CPU time of the application. Selecting high
CPU time procedures works well since although critical
path profiling assigns a different ordering and importance to
the top ten procedures, the procedures generally remain the
same[7]. If top procedures are not the same, this fact can be
detected since their cumulative share of the critical path
length will be small. In this case, the programmer can select
a different set of procedures and compute the critical path
share for them.

1 struct node { // one record per PAG node (program event)
2   longest // longest path to this node
3   cpPred // predecessor node along longest path
4   inArcs // count of inbound arcs processed
5   totalInArcs // total number of inbound arcs (set when graph is built)
6   outArc[2] // pointer to successor nodes (set when graph it built)
7   activeFunc // function that is active when event occurs
8 };
 
9 // First Pass: forward along all arcs of the PAG
10 while (not empty queue) {
11     dequeue(node, fromNode, length);
12     if (length > node.longest) {
13  node.longest = length;
14  node.cpPred = fromNode;
15     }
16   node.inArcs++;
17   if (node.inArcs == node.totalInArcs) {
18      for each out arc {
19  enqueue(node.outArc[i], node,
20    node.length + node.ourArc[i].length);
21   }
22 }
 
23 // second pass (from end of PAG to start along the critical path)
24 pred = final_node;
25 node = final_node.cpPred;
26 while (node != NULL) {
27  cpProfile[pred.activeFunction] += node.longest - pred.longest;
28  node = pred;
29  pred = pred.cpPred;
30 } 

Figure 2: Algorithm to compute the Critical Path profile from a PAG.



We could also automate the identification of the top
items in the critical path profile. To do this, we take advan-
tage of the fact that we are interested in the top m items,
where m is a user supplied value, on the critical path pro-
file, and that the most expensive operation is to send mes-
sages between processes.  Based on these two assumptions,
it is possible to employ a variation on binary search to
identify the top m items from a set of  n items in O(m log2

n) time.  The details of this algorithm are given in Appendix
B.

To compute the length of the critical path (but not the
share due to any procedure), we can use a variation of the
distributed algorithm used in pass one of the off-line ver-
sion of the algorithm. Rather than recording the significant
events and then building the full program activity graph, we
use the normal flow of messages in the application to trav-

erse the graph implicitly. For each message sent, we attach
an extra value to indicate the length of the longest path to
the point of the send operation. For each receive event, we
compare the received value to the local length of the critical
path. If the received length is longer than the local one, we
set the value of the local copy to the received copy. At the
end of the computation, the critical path length is the long-
est path through any of the processes. To compute the share
of the longest path due to a selected procedure, we also
keep track of  (and pass) the amount of time the selected
procedure is on the longest path.

Each process keeps a structure of five variables (shown
in lines 2-6 of Figure 3). These variables record the longest
path ending in the process, the share of that path due to the
selected procedure, a flag to indicate if the selected proce-
dure is currently active, the time of the last recorded event

1 struct { // one per process
2  longest; //  longest path in this process.
3  funcShare; // function’s share of the longest path.
4  funcActive; // is selected function active in process
5   lastTime; // time of the last instrumented event
6  funcLastTime; // time of last instrumented func event.
7 };
 
8 Send(toHost):
9   now = CPUTime();
10     process.longest += now - process.lastTime;
11     process.lastTime = now;
12     if (process.funcActive) {
13         // add active time of this func.
14         process.funcLonest += now - process.funcLastTime;
15         process.funcLastTime = now;
16     }
17     send(toHost, process.longest, process.funcLongest);
 
18 Recv(fromHost):
19   now = CPUTime();
20   process.longest += now - process.lastTime.
21     recv(fromHost, rmtLongest, rmtFuncShare);
22     if (rmtLongest > process.longest) {
23         process.longest = rmtLongest;
24       process.funcShare = rmtFuncShare;
25       process.lastTime = now;
26     } else {
27         if (process.funcActive) {
28             process.funcShare += now - process.funcLastTime;
29         }
30     }
31     if (process.funcActive) {
32         // start the func clock here.
33         process.funcLastTime = now;
34     }
 
35 Entry: // to selected procedure or function
36     // mark active and start the func clock.
37     process.funcActive = 1;
38     process.funcLastTime = CPUTime();
 
39 Exit: // from selected procedure or function
40     process.funcActive = 0;
41     process.funcShare +=
42  currentProcessTime () - process.funcLastTime;

Figure 3: Algorithm to compute the Critical Path of a function on-the-fly.



in the process, and the time of the last recorded event when
the selected procedure was active.

Four events in the application program require instru-
mentation: message send and receive, and calls to and re-
turns from the desired procedure. Pseudo-code for the algo-
rithm is shown in Figure 3. It consists of four short code
segments, one for each of the four application events that
require instrumentation. Since all of the code segments re-
quire constant time to execute, the complexity of the com-
putation is linear in the number of events. The only data
structures are one copy of the per process structure (shown
in Figure 3, lines 1-7) and the piggy-backed data for mes-
sages that have been sent but not received (stored in mes-
sage buffers).

 For clarity, we describe the inclusive critical path for a
single selected procedure (i.e., cumulative time spent in the
procedure and procedures it calls). To compute the non-
inclusive critical path for a procedure, we need to insert
instrumentation before and after each subroutine called by
the selected subroutine.  Before the called subroutine, we
could use the same instrumentation shown in lines 38-41 of
Figure 3. After the subroutine returns, we use the instru-
mentation shown in lines 34-37 of Figure 3.

2.3 Critical Path of Partial Program Execution.
 The algorithm we described in the previous section

works as long as we want to compute the critical path for
the entire program’s execution and report the result at appli-
cation termination. However, we also would like to be able
to compute the critical path for a fraction of the program’s
execution. For the off-line version of critical path, selecting
a fraction of the program’s execution is equivalent to di-
viding the PAG into three disjoint pieces (sets of vertices).
The first piece contains those events before we want to
compute the critical path, the second the events we wish to
compute the critical path for, and the third piece the events
after the selected interval.

In the on-line case, we don’t explicitly build the PAG,
and so we must identify the desired division of the PAG
into parts by sending data attached to application messages.
First we will describe how to stop critical path analysis and
then we will return the question of starting it during execu-
tion.

Closely related to stopping critical path profiling dur-
ing program execution is sampling intermediate values for
the critical path profile. In this case, we compute the critical
path profile up until a well-defined point, and report its
value. Sampling the critical path is the same as stopping the
critical path at some point during program execution. We
now describe how to calculate intermediate values of the
critical path starting from the beginning of the program’s
execution.

To compute the intermediate critical path, we periodi-
cally sample each process in the application and record
both its current critical path length and the share of the
critical path due to the selected procedure. This information
is forwarded to a single monitoring process. During the
computation, the current global critical path length is the
maximum value of the individual sample values from each
process. The value of the critical path for the selected pro-
cedure is the procedure component of the longest critical
path sample. The sampling step is shown in Figure 4.

Since sampling of intermediate values of the critical
path in each process possibly occurs at different times, an
important question is can we combine the samples into a
metric value that represents a consistent snapshot of the
critical path during program execution? Our goal is to show
that the sequence of intermediate values of the Critical Path
at the central monitoring process corresponds to a consis-
tent view. Conceptually, a consistent snapshot is one that is
achieved by stopping all processes at once and recording
the last event in each process.  However, it is sufficient to
show that a sample corresponds to a set of events (one per
process) that could have been the last events if we had
stopped all of the processes. To explain this property, we
introduce two additional definitions:

 
1 Sample: // called by an alarm expiring in the
2  //  application process
3     send(monitorProcess, process.longest,
4  process.funcShare);
 
5 Sample: // in a central monitoring process
6     // keep looping reading reports of the CP.
7     global.longest = 0;
8   global.funcShare = 0;
9     do until computation done {
10      recv(fromProc, sample.longest, sample.funcShare);
11      if (sample.longest > global.longest) {
12          // update length and func’s share of length.
13          global.longest = sample.longest;
14         global.funcShare = sample.funcShare;
15          // report CP length and percentage
16   //  in the selected procedure.
17  }

Figure 4: Sampling the Critical Path during program execution.



Happen Before: denotes the transitive partial ordering of
events implied by communication operations and the
sequence of local events in a process. For local events,
one event happened before another event if it occurred
earlier in the program trace for that process. For remote
events, send happens before the corresponding receive
event. Formally, it is the set of precedence relation-
ships between events implied by Lamport’s happened
before relationship[9]. If event x happens before event
y, we denote this by x → y.

State Slice: For any event e in a program trace PT and any
process p, a state slice is a set of events that contains
the last event in each process that is required to happen
before e based on the happen before relation. Formally,
slice[p, e] = { PT[p,i]: PT[p,i] → e and (∀j > i ¬
(PT[p,j] →e))} where p is a process in PT, e is an
event in PT, and i & j are integers between 1 and the
number of events in process p.

In addition to collecting intermediate values that corre-
spond to consistent snapshots of a program’s execution, we
also want to report values in a timely manner. An interme-
diate value of the critical path should correspond to point in
the program’s execution that is a bounded amount of time
since the last sample from each process. If we simply use
the state slice associated with the currently longest value to
define such a point, we can’t ensure that the point is timely.
The reason for this is that if one process doesn’t communi-
cate with the other processes, the event for the non-
communicating process in the state slice might be arbitrarily
early.

To ensure the timeliness of samples, we need to com-
bine the state slices for the latest sample from each process.
To do this we compute G, the latest event from each proc-
ess known at the monitoring station. For sample i, G[p,i] =
max(G[p,i-1], slice[p,i]). Hence, the events in the combined
state slice G will be no earlier than the last sample from
each process. However, we must show that G produces a
consistent snapshot of the program. The proof of this prop-

erty of our sampling algorithm appears in the Appendix A.

We would also like to be able to start computing the
critical path once the program has started execution. To
ensure the computed metric is meaningful, we need com-
pute the critical path starting from a point that corresponds
to a consistent snapshot of the program’s execution. How-
ever, to start computing our metric, a central process must
send messages to each application process requesting it to
start collecting critical path data. In general, it is impossible
to ensure that all of the processes will receive this message
at the same time. Even if we could, we need to account for
messages that were being transmitted (in flight) at the time
we start to compute the critical path.

We assume that every message that is sent between two
processes either contains a critical path message if the
sending process has started recording CP, or not if it the
sender has not. We further assume that any receiver can
detect whether or not a message has a critical path message
attached to it. Without loss of generality, we can assume
that there is only one type of critical path message (i.e., we
are computing the critical path for a single procedure).
There are four cases to consider:

(1) A message without critical path data arrives at a
process that is not computing the critical path.

(2) A message with critical path data arrives at a proc-
ess that is already computing the critical path.

(3) A message with critical path data arrives at a proc-
ess that is not computing the critical path.

(4) A message without critical path data arrives at a
process that is already computing the critical path.

Cases (1) and (2) require no special treatment since
they occur either before or after the point where the critical
path computation starts. We handle case (3) by starting to
collect critical path data at that point. We handle case (4)
by doing nothing, the sending event occurred before we
started calculating the Critical Path.

To ensure that we can start calculating the critical path

 
1 Recv(fromHost):
2   now = CPUtime();
3   process.longest = now-process.lastTime;
4     recv(fromHost, rmtLongest, rmtFuncShare);
5   if (rmtLongest - rmtFuncShare >
6       process.longest - process.funcShare) {
7         process.longest = rmtLongest;
8       process.funcShare = rmtFuncShare;
9     } else {
10         if (process.funcActive) {
11             process.funcShare +=
12  now - process.funcLastTime;
13         }
14     }
15     if (process.funcActive) {
16         // start the func clock here.
17         process.funcLastTime = now;
18     }

Figure 5: Computing Logical Zeroing.



during program execution, we must establish that no matter
when each process receives the message to start calculating
the critical path (either directly from the monitoring station
or from another process) that the resulting calculation will
correspond to computing the critical path starting from a
consistent state during the execution of P.

This is a special case of the consistent global snapshot
problem described by Chandy and Lamport in [3]. Chandy
and Lamport describe an algorithm to record the global
state of a computation by sending a marker token along
communication channels. In our scheme, the receipt of a
critical path start message is equivalent to receipt of  a
marker token in their scheme. We won’t repeat their proof
here, but the key idea of the proof is that it is possible to
order the events in the computation such that all events be-
fore starting to calculate the critical path occur before all
events after starting to calculate the critical path and that the
re-ordering of events is a feasible execution of the program.

3. Online Critical Path Zeroing
Critical Path profiling provides an upper bound on the

improvement possible by tuning a specific procedure. How-
ever, it might be the case that slightly improving a proce-
dure on the critical path could cause that procedure to be-
come sub-critical and that most of the effort to tune that
procedure would be wasted. To provide better guidance in
this situation, we previously proposed a metric called logi-
cal zeroing[7] that computes the reduction in the length of
the critical path length due to tuning specific procedures.
However, computing logical zeroing also required collect-
ing a large amount of data and building a post-mortem
graph. Fortunately, a variation of our online critical path
algorithm can be used to compute logical zeroing.

The key idea of this algorithm is the same as critical
path, we piggy-back instrumentation data onto application
messages. The only difference is at merge nodes, where we
compare the “net” path lengths for both the remote and lo-
cal sample. The “net” path length is the path length minus
the share of the path due to the selected procedure. Figure 5
shows the pseudo code for the computation of logical ze-
roing at a “merge” (receive) node. The changes are at lines
5-6; before of comparing the two path lengths we subtract
the corresponding share of each path due to the selected
procedure. The only other change required is when the
critical path value is sampled; we report the “net” critical

path length not the share of the critical path due to the se-
lected procedure.

4. Initial Implementation
We have added an implementation of our online criti-

cal path algorithm to the Paradyn Parallel Performance
Tools.  We were interested in learning two things from our
implementation.  First, we wanted to quantify the overhead
involved in piggy-backing instrumentation messages onto
application messages. Second, we wanted to demonstrate
that the information supplied by critical path analysis pro-
vides additional guidance to programmers compared to
CPU time profiling.

Our initial implementation works with PVM programs
on any platform that the Paradyn tools support.  There is no
fundamental reason to use PVM, but for each message
passing library we need to write a small amount of code to
support piggy-backing critical path messages onto data
messages.  Due to the semantics of PVM and our desire not
to modify the PVM source code, we were forced to use an
implementation of piggy-backing that requires that a sepa-
rate message be sent right after every message even if we
are not currently computing the critical path.  Although this
extra message does add a bit of overhead, we show below
that it is not significant. It is possible to eliminate this extra
message with a slight modification of PVM.

To quantify the overhead of piggy-backing instrumen-
tation messages onto application data, we constructed a
simple two process test program. Each process “computes”
for some interval of time and then sends a message to the
other process. By varying the amount of data transferred
and the amount of “computation” done we can simulate
programs with different ratios of computation to communi-
cation. We can also vary message size and frequency. Since
“piggy-backing” messages incurs a per message overhead,
the more frequently messages are sent, the higher the over-
head.  PVM runs on a range of different networks from
Ethernet to custom MPP interconnects.  To gauge the im-
pact of our instrumentation on these different platforms, we
conducted tests on two systems.  The first was a pair of Sun
Sparcstation-5s connected by 10 Mb/s Ethernet.  The sec-
ond was two nodes of an IBM SP-2 connected by a 320
Mb/s high performance switch. For all reported results, the
times shown were the minimum time of three runs. Varia-

Number of ~75% Computation ~60% Computation
CP Items Wall Time Overhead Wall Time Overhead

Base 154.1 91.7
0 157.0 1.9% 94.9 3.4%
1 157.4 2.1% 95.5 4.1%
4 157.5 2.2% 95.8 4.4%
8 158.4 2.8% 95.8 4.4%

16 158.5 2.9% 95.9 4.6%
32 159.6 3.6% 97.0 5.8%

Figure 6: Overhead Required to Compute Per Procedure Critical Path.



tion between runs was less than 1 percent.

The table in Figure 6 shows two versions of the pro-
gram run on the SPARC/Ethernet configuration. The first
version computed for 75% of its execution time and spent
the remaining 25% of the time sending and receiving mes-
sage. The second version spent 60% of its time in computa-
tion and 40% in message passing. Each program sends the
same size and number of messages, but we varied the
“computation” component between the two programs.

The time required to send an empty piggy-back mes-
sage is shown in the third row. For the 75% computation
case, sending empty messages added a 1.9% overhead to
the application and for the 60% computation case it was
3.4%. This provides an indication of the overhead required
to simply enable the piggy-back mechanism and send an
empty message. We were also interested in measuring the
per procedure cost of computing the critical Path. For each
version we varied the number of procedures we calculated
the critical path for from 1 to 32 procedures. In addition, we
report the time required to run the un-instrumented version
of the program. None of the critical path items (procedures)
were called by the application, so the reported overhead
represents the incremental cost of computing the critical
path for a procedure compared to the cost of computing a
simple CPU profile.

The data shown in Figure 7 is for the IBM SP-2 con-
figuration.  In this case, we held the computation to com-
munication ratio fixed at 75% computation, and varied the
message passing frequency and message size.  We used a
message passing rate of approximately 5, 50, and 150 mes-
sages per second per processor.  For these three cases, the
size of each message was 48,000, 4,800, and 480 bytes re-
spectively. In all three cases (5, 50, and 150 messages per
second per processor), the overhead of sending the empty

critical path message was less than 1 percent.  As expected,
when we increased the number of critical path items being
computed, the overhead went up.  Notice that the overhead
for the 32 procedure case for 150 messages/sec results in an
overhead of almost 50 percent! Clearly this would not be
acceptable for most applications. However, for the four and
eight procedure cases, the overhead is 6 and 11 percent
respectively.  We feel this amount of overhead would be
acceptable for most applications.  If an even lower over-
head were necessary for an application, it could be run sev-
eral times and the critical path profile information could be
computed for a small number of procedures  each time.

To evaluate the effectiveness of Critical Path computa-
tion on applications, we ran our algorithm on a PVM ver-
sion of Integer Sort, one of the NAS benchmarks. The pro-
gram was run on a network of two Sun Sparcstation 5’s
connected by an Ethernet. The results are shown in Figure 9.
This table summarizes the Critical Path values and CPU
time for the top three procedures. For each metric, we pres-
ent the value of the metric and the percentage of the total
metric value.  Since the total value varies with different
metrics, the percentage value is the important one for com-
parison. The percentage is the “score” for each procedure,
indicating the important assigned to it by that metric.

This example shows the benefit of the additional in-
formation provided by Critical Path compared to CPU time
profiling. Although create_seq is only 12% of the total exe-
cution time of the overall program, it was responsible for

Number of 5 msgs/sec 50 msgs/sec 150 msgs/sec
CP Items Time Percent Time Percent Time Percent

Base 50.3 51.9 194.0
0 50.4 0.3 51.8 0.0 194.5 0.3
1 50.9 1.2 52.7 1.7 197.6 1.9
4 50.8 1.1 53.3 2.7 206.0 6.2
8 51.4 2.2 55.4 6.9 215.4 11.1

32 55.1 9.5 64.0 23.5 287.8 48.4

Figure 7: Comparison of overhead for different message rates.

Program
 Component

CP
Zero

% CP
Zero

CP % CP CPU % CPU

s_recv 7.3 18.4 9.7 24.5 36.6 29.8
step 5.5 13.9 8.5 21.3 23.9 19.4
s_send 4.2 10.6 7.1 17.9 21.4 17.4
tracer 1.7 4.3 1.9 4.8 5.3 4.3
clinc 1.5 3.9 1.5 3.9 5.8 4.7

Figure 8: Metric values  for Ocean Application. 

Procedure CP % CP CPU % CPU
nas_is_ben 12.4 56.4 54.8 74.1
create_seq 9.2 42.0 9.2 12.4
do_rank 0.4 1.6 9.2 12.5

Figure 9: NAS  IS Benchmark Results.



42% of the length of the critical path. The reason for this is
that the routine is completely sequential. Other sequential
metrics would not have easily identified the importance of
creat_seq.

We also measured a PVM application running on an
IBM SP-2. For this program, we measured an implementa-
tion of the GFDL Modular Ocean Model[2] developed by
Webb[15]. The results of computing the CPU time profile,
Critical path Profile, and Critical Path Zeroing are shown in
Figure 8.

The results show the importance of using Critical Path
Zeroing to identify the potential decrease in the Critical
Path length by improving selected procedures compared to
CPU time profiling or even Critical Path Profiling. Al-
though all three metrics indicate that s_recv is the most
important program component to fix, the weight assigned to
it varied from 18 to 30 percent. CP Zeroing provides a
lower value for this procedure because other sub-critical
paths in the program limit the improvement possible by just
tuning this one routine.

5. Related Work
Implicitly walking a PAG by attaching instrumentation

messages onto applications messages has been used for
online detection of race conditions in parallel programs[5,
8].  Similar instrumentation has also been used to reduce
the number of events that must be logged for program re-
play[13].

Many metrics and tools have been developed to quan-
tify the performance of parallel programs.  The Paradyn[11]
and Pablo[14] tools provide a wealth of performance  met-
rics. Other metrics focus on specific sources of  bottlenecks
in parallel programs[1, 10].

6. Conclusion
We have presented an online algorithm to compute the

critical path profile of a parallel program, and a variant of
critical path called critical path zeroing. We showed that it
is possible to start collecting the critical path during pro-
gram execution, and that sampling intermediate results for
critical path profiling is possible and produces a meaningful
metric. In addition, we showed that it is possible to compute
this algorithm with minimal impact on the application pro-
gram. Finally, we presented a brief case study that demon-
strated the usefulness of critical path for a PVM message
passing program.

Appendix A
In this appendix, we show that combing critical path

samples corresponds to a feasible execution of P. In other
words, we are not restricting ourselves to computing the
critical path of the exact total ordering of the events in the
computation, but instead to that of the family of feasible
executions that satisfy the happened before relation.

Consider the sending of critical path samples to the
monitoring station.  Sending a sample message is an event

in the application process.  During program execution, a
series of samples will arrive from the application processes.
Let CP(i) represent the send sample event corresponding to
the ith sample to arrive at the monitoring station.  Therefore,
slice[p, CP(i)] is the last event in process p that must have
proceeded the sample. For each sample i, let G[p,i] be the
latest event for  process p from all of the state slices for
samples 0 to i (i.e., G[p,i] = max(G[p,i-1], slice[p,i]).
G[p,0] = PT[p, 1].  Let G[*,i] denote the set of events for
all processes p in G[p,i].

To show that the series of critical path samples corre-
spond to a sampling of states during a feasible execution of
P, we must show that all states G[*,0], G[*,1],…,G[*,n]
correspond to a sequence of global states in feasible execu-
tion P' of P.

Theorem: for all i, G[*,i] corresponds to a  feasible global
state of P.

Proof: The proof is by induction. G[*,0] is trivially a feasi-
ble state since it represents that start of the program's
execution. Now, assume G[*,i] is a feasible state. Let S
denote the set of events that occur between G[*,i] and
G[*,i+1]. S consists of the events in each process that
must occur after G[*,i] and at or before G[*,i+1].
G[*,i+1] is a feasible state of P if there exists a total
ordering of S that satisfies the happen before con-
straint. To see that G[*,i+1] is feasible, consider what it
would mean if it were not. This would imply that there
is no ordering of the events in S that satisfy happen be-
fore. For this to be the case, it requires that there exists
events x, y, z in S such that x → y, y → z, and z → x.
However, this is not possible by the definition of HB;
therefore G[*,i+1] is a feasible state of P.

Finally, the sequence G[*,0], G[*,1], … , G[*,n] corre-
sponds to a series of events in a single feasible execution of
P.  This can be shown by a construction, since G[*,0] is the
start of the computation, and we can construct a total or-
dering of the events in P such that G[*,1] is a global state,
and from there such the rest  are global states. The con-
structed total ordering is then a feasible execution of P.

Appendix B
In this appendix we present a simple algorithm to per-

mit finding all items whose share (fraction) of the critical
path is larger than 1/m, where m is an integer.  Two key
observations make this algorithm possible:

(1) There are at most m items whose share of the criti-
cal path is greater than 1/m.

(2) Since the major cost in computing the critical path
corresponds to the sending of instrumentation
messages, computing the aggregate critical path
for a collection of procedures has about the same
cost as computing the critical path for a single pro-
cedure.



We start the algorithm with n items to consider.  We
divide our n items into 2 * m  disjoint buckets each with
 n m/ ( * )2  or  n m/ ( * )2  + 1 items.  We then compute
the aggregate share of the critical path for each bucket. At
then end of the program2, we compare the critical path share
for each bucket.  The critical path share of  at most m buck-
ets will be 1/m or larger. We discard the procedures in
those buckets whose CP share is less than 1/m.  This elimi-
nates at least half of the procedures. We then repeat our
algorithm with the remaining procedures put into 2*m
buckets until the buckets contain only a single item (proce-
dure). This pruning of procedures makes it possible to
identify the up to m procedures responsible for at least 1/m
of the overall execution of the program in O(m log2 n)
steps.

It is easy to remove the restriction that we must run the
program n times to identify the program components that
are responsible for more than 1/m of the total length of the
critical path.  To do this, we use the observation that within
a single phase of a program’s execution, it performance
remains consistent. We can use the ability of our critical
path algorithm to compute the critical path for part of a
program’s execution to compute the critical path for a fixed
interval of the program, and then evaluate the next step in
the search algorithm
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